Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 203-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation was performed to evaluate the effect of wall temperature and thermal radiation accounting on the processes of hydrogen-air mixture self-ignition in a flat channel. The simulation was performed in the Ansys Fluent 2020 R1 software package. Analysis of the calculation results for various wall temperature values has shown that at temperatures above 550 K, self-ignition of the mixture and propagation of the combustion wave, which turns into detonation, occurs. The movement of the detonation wave upstream and its exit into the narrow part of the channel points to the channel chocking. It has been shown that taking into account thermal radiation promotes earlier ignition of the mixture, but does not affect the flow mode and the rates of combustion product formation.
Keywords: numerical simulation, premixed hydrogen combustion, high-speed flow, thermal radiation, temperature factor.
@article{CHFMJ_2024_9_2_a4,
     author = {I. R. Vasnev and N. N. Fedorova},
     title = {Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {203--212},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a4/}
}
TY  - JOUR
AU  - I. R. Vasnev
AU  - N. N. Fedorova
TI  - Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 203
EP  - 212
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a4/
LA  - ru
ID  - CHFMJ_2024_9_2_a4
ER  - 
%0 Journal Article
%A I. R. Vasnev
%A N. N. Fedorova
%T Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 203-212
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a4/
%G ru
%F CHFMJ_2024_9_2_a4
I. R. Vasnev; N. N. Fedorova. Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 203-212. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a4/

[1] Liberman M. A., Combustion Physics: Flames, Detonations, Explosions, Astrophysical Combustion and Inertial Confinement Fusion, Springer-Nature, 2021

[2] Vasnev I.R., Fedorova N.N., “Numerical simulation of heating of experimental model walls in supersonic flows”, Journal of Applied Mechanics and Technical Physics, 64 (2023), 279–283 | DOI | DOI

[3] Curran D. R., Wheatley V., Smart M. K., Proc. 22nd Australasian Fluid Mechanics Conference AFMC2020, (Brisbane, Australia, 7–10 December 2020), eds. H. Chanson and R. Brown, University of Queensland, 2020

[4] Wan J., Zhao H., “Effect of thermal condition of solid wall on the stabilization of a preheated and holder-stabilized laminar premixed flame”, Energy, 200 (2020), 117548 | DOI

[5] Mazumber S., Roy S. P., “Modeling thermal radiation in combustion environments: progress and challenges”, Energy, 16 (2020), 4250 | MR

[6] Kotov D.V., Surzhikov S.T., “Computation of hypersonic flow and radiation of viscous chemically reacting gas in a channel modeling a section of a scramjet”, High Temperature, 50:1 (2012), 120–130 | DOI

[7] Centeno F. R., Silva C. V., Brittes R., “Numerical simulations of the radiative transfer in a 2D axisymmetric turbulent non-premixed methane-air flame using up-to-date WSGG and gray-gas models”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37 (2015), 1839–1850 | DOI

[8] Goldfeld M.A., Zakharova Y.V., Fedorov A.V., Fedorova N.N., “Effect of the wave structure of the flow in a supersonic combustor on ignition and flame stabilization”, Combustion, Explosion and Shock Waves, 54 (2018), 629–641 | DOI | MR

[9] Maas U., Warnatz J., “Ignition processes in hydrogen-oxygen mixtures”, Combustion and Flame, 74 (1988), 53–69 | DOI

[10] Fiveland W. A., “Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures”, Journal of Heat Transfer, 106 (1984), 699–706 | DOI

[11] Smith T. F., Shen Z. F., Friedman J. N., “Evaluation of coefficients for the weighted sum of gray gases model”, Journal of Heat Transfer, 104 (1982), 602–608 | DOI

[12] ANSYS CFD Academic Research, Custom number 610336

[13] Vincent G., Fengshan L., Andre C., “An assessment of real-gas modelling in 2D enclosures”, Journal of Quantitative Spectroscopy and Radiative Transfer, 64 (2000), 299–326 | DOI

[14] Soufiani A., Taine J., “High temperature gas radiative property parameters of statistical narrow-band model for H$_2$O, CO$_2$ and CO, and correlated-K model for H$_2$O and CO$_2$”, International Journal of Heat and Mass Transfer, 40:4 (1997), 987–991 | DOI