Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_2_a4, author = {I. R. Vasnev and N. N. Fedorova}, title = {Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {203--212}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a4/} }
TY - JOUR AU - I. R. Vasnev AU - N. N. Fedorova TI - Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 203 EP - 212 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a4/ LA - ru ID - CHFMJ_2024_9_2_a4 ER -
%0 Journal Article %A I. R. Vasnev %A N. N. Fedorova %T Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 203-212 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a4/ %G ru %F CHFMJ_2024_9_2_a4
I. R. Vasnev; N. N. Fedorova. Convective and radiative heat transfer effects on premixed hydrogen-air combustion in high-speed flow. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 203-212. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a4/
[1] Liberman M. A., Combustion Physics: Flames, Detonations, Explosions, Astrophysical Combustion and Inertial Confinement Fusion, Springer-Nature, 2021
[2] Vasnev I.R., Fedorova N.N., “Numerical simulation of heating of experimental model walls in supersonic flows”, Journal of Applied Mechanics and Technical Physics, 64 (2023), 279–283 | DOI | DOI
[3] Curran D. R., Wheatley V., Smart M. K., Proc. 22nd Australasian Fluid Mechanics Conference AFMC2020, (Brisbane, Australia, 7–10 December 2020), eds. H. Chanson and R. Brown, University of Queensland, 2020
[4] Wan J., Zhao H., “Effect of thermal condition of solid wall on the stabilization of a preheated and holder-stabilized laminar premixed flame”, Energy, 200 (2020), 117548 | DOI
[5] Mazumber S., Roy S. P., “Modeling thermal radiation in combustion environments: progress and challenges”, Energy, 16 (2020), 4250 | MR
[6] Kotov D.V., Surzhikov S.T., “Computation of hypersonic flow and radiation of viscous chemically reacting gas in a channel modeling a section of a scramjet”, High Temperature, 50:1 (2012), 120–130 | DOI
[7] Centeno F. R., Silva C. V., Brittes R., “Numerical simulations of the radiative transfer in a 2D axisymmetric turbulent non-premixed methane-air flame using up-to-date WSGG and gray-gas models”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37 (2015), 1839–1850 | DOI
[8] Goldfeld M.A., Zakharova Y.V., Fedorov A.V., Fedorova N.N., “Effect of the wave structure of the flow in a supersonic combustor on ignition and flame stabilization”, Combustion, Explosion and Shock Waves, 54 (2018), 629–641 | DOI | MR
[9] Maas U., Warnatz J., “Ignition processes in hydrogen-oxygen mixtures”, Combustion and Flame, 74 (1988), 53–69 | DOI
[10] Fiveland W. A., “Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures”, Journal of Heat Transfer, 106 (1984), 699–706 | DOI
[11] Smith T. F., Shen Z. F., Friedman J. N., “Evaluation of coefficients for the weighted sum of gray gases model”, Journal of Heat Transfer, 104 (1982), 602–608 | DOI
[12] ANSYS CFD Academic Research, Custom number 610336
[13] Vincent G., Fengshan L., Andre C., “An assessment of real-gas modelling in 2D enclosures”, Journal of Quantitative Spectroscopy and Radiative Transfer, 64 (2000), 299–326 | DOI
[14] Soufiani A., Taine J., “High temperature gas radiative property parameters of statistical narrow-band model for H$_2$O, CO$_2$ and CO, and correlated-K model for H$_2$O and CO$_2$”, International Journal of Heat and Mass Transfer, 40:4 (1997), 987–991 | DOI