Numerical study of the gas detonation attenuation in the acetylene-air mixture
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 187-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

The computational technology was created for modeling the attenuation of a cellular detonation during the interaction of detonation waves with a rigid permeable barrier in flammable mixtures based on the ANSYS Fluent package. The reduced kinetic mechanism of acetylene combustion in air was verified using known experimental data. The interaction of detonation waves with a rigid permeable barrier was simulated. The dependencies of detonation attenuation modes on the geometric parameters of the obstacles were determined. Criteria for successful failure and preventing the re-initiation of detonation were identified. The contribution of the considered geometric parameters of the barrier to the attenuation of detonation is estimated. A comparison of the results obtained for acetylene-air and hydrogen-air mixtures was carried out.
Keywords: numerical modeling, detonation, detonation cell, chemical kinetics, detonation attenuation.
@article{CHFMJ_2024_9_2_a2,
     author = {I. A. Bedarev and V. M. Temerbekov},
     title = {Numerical study of the gas detonation attenuation in the acetylene-air mixture},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {187--194},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a2/}
}
TY  - JOUR
AU  - I. A. Bedarev
AU  - V. M. Temerbekov
TI  - Numerical study of the gas detonation attenuation in the acetylene-air mixture
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 187
EP  - 194
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a2/
LA  - ru
ID  - CHFMJ_2024_9_2_a2
ER  - 
%0 Journal Article
%A I. A. Bedarev
%A V. M. Temerbekov
%T Numerical study of the gas detonation attenuation in the acetylene-air mixture
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 187-194
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a2/
%G ru
%F CHFMJ_2024_9_2_a2
I. A. Bedarev; V. M. Temerbekov. Numerical study of the gas detonation attenuation in the acetylene-air mixture. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 187-194. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a2/

[1] Tropin D. A., Fedorov A. V., “Physical and mathematical modeling of interaction of detonation waves in mixtures of hydrogen, methane, silane, and oxidizer with clouds of inert micro- and nanoparticle”, Combustion Science and Technology, 191:2 (2019), 275–283 | DOI

[2] Lin Y.-J., Wang S.-H., Liu C.-H., Tsai H.-Y., Chen J.-R., “Suppression of Flame Propagation in a Long Duct by an Inert Gas Plug”, 11th Asia-Pacific Conference on Combustion, December, The University of Sydney, NSW Australia, 2017

[3] Vasil’ev A.A., Pinaev A.V., Trubitsyn A.A., Grachev A.Yu., Trotsyuk A.V., Fomin P.A., Trilis A.V., “What is burning in coal mines: Methane or coal dust?”, Combustion, Explosion, and Shock Waves, 53:1 (2017), 8–14 | DOI

[4] Makris A., Papyrin A., Kamel M., Kilambi G. Lee J. H. S., Knystautas R., “Mechanisms of detonation proragation in a porous medium”, Dynamic Aspects of Detonations, v. 153, eds. A. L. Kuhl, J.-C. Leyer, A. A. Borisov, W. A. Sirignano, 1993, 363–380

[5] Tropin D. A., Temerbekov V. M., “Numerical simulation of detonation wave propagation through a rigid permeable barrier”, International Journal of Hydrogen Energy, 47:87 (2022), 37106–37124 | DOI

[6] Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32 (1994), 1598–1605 | DOI

[7] Bedarev I.A., Fedorov A.V., Rylova K.V., “Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen–air mixtures”, Combustion, Explosion, and Shock Waves, 51:5 (2015), 528–539 | DOI

[8] Lokachari N., Burke U., Ramalingam A., Turner M., Hesse R., Somers K. P., Beeckmann J., Heufer K. A., Petersen E. L., Curran H. J., “New experimental insights into acetylene oxidation through novel ignition delay times, laminar burning velocities and chemical kinetic modeling”, Proceedings of the Combustion Institute, 37:1 (2019), 583–591 | DOI

[9] Lewis B., Elbe G., Combustion, Flames and Explosions of Gases, Academic Press, New York, 1961

[10] Bull D. C., Elsworth J. E., Shuff P. J., Metcalfe E., “Detonation cell structures in fuel/air mixtures”, Combustion and Flame, 45:1 (1982), 7–22 | DOI

[11] Tieszen S. R., Stamps D. W., Westbrook C. K., Pitz W. J., “Gaseous hydrocarbon-air detonations”, Combustion and Flame, 84:3 (1991), 376–390 | DOI