Modeling of aortic deformation in aneurysm and wall dissection
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 255-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

The deformations of aortic walls in case of aortic aneurysm (dilation) and aortic wall dissection are studied. Numerical calculations of the load on the aortic walls at aneurysm and aortic wall dissection are carried out. It is shown that rupture of the inner layer of the vessel leads to an increase in the stress on the outer wall of the vessel. Increasing the thickness and length of the rupture increases the stresses on the outer wall of the vessel. The presence of an aneurysm of the vessel increases the stresses compared to a vessel without an aneurysm. Splitting of the inner wall of the vessel leads to an increase in the stresses on the wall — stresses decrease with increasing rupture width for a straight vessel and increase for a vessel with an aneurysm.
Keywords: aortic dissection, aortic aneurysm, mathematical modeling, hemodynamics, wall stress, biomechanics.
@article{CHFMJ_2024_9_2_a10,
     author = {A. E. Medvedev and A. D. Erokhin},
     title = {Modeling of aortic deformation in aneurysm and wall dissection},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {255--260},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a10/}
}
TY  - JOUR
AU  - A. E. Medvedev
AU  - A. D. Erokhin
TI  - Modeling of aortic deformation in aneurysm and wall dissection
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 255
EP  - 260
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a10/
LA  - ru
ID  - CHFMJ_2024_9_2_a10
ER  - 
%0 Journal Article
%A A. E. Medvedev
%A A. D. Erokhin
%T Modeling of aortic deformation in aneurysm and wall dissection
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 255-260
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a10/
%G ru
%F CHFMJ_2024_9_2_a10
A. E. Medvedev; A. D. Erokhin. Modeling of aortic deformation in aneurysm and wall dissection. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 255-260. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a10/

[1] Melissano G., Aortic dissection: Patients true stories and the innovations that saved their lives, Edi. Ermes, Milan, 2016

[2] Carew T. E., Vaishnav R. N., Patel D. J., “Compressibility of the arterial wall”, Circulation research, 23:1 (1968), 61–68 | DOI

[3] Peterson L. H., Jensen R. E., Parnell J., “Mechanical properties of arteries in vivo”, Circulation Research, 8:3 (1960), 622–639 | DOI

[4] Meyers M. A., Chawla K. K., Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2008

[5] Holzapfel G. A., Gasser T. C., Ogden R. W., “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, Journal of Elasticity and the Physical Science of Solids, 61:1 (2000), 1–48 | DOI | MR | Zbl