Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_2_a1, author = {A. A. Afanasenkov and T. A. Khmel}, title = {Validation of the model of hybrid detonation of hydrogen-air mixtures with aluminium particles}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {177--186}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a1/} }
TY - JOUR AU - A. A. Afanasenkov AU - T. A. Khmel TI - Validation of the model of hybrid detonation of hydrogen-air mixtures with aluminium particles JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 177 EP - 186 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a1/ LA - ru ID - CHFMJ_2024_9_2_a1 ER -
%0 Journal Article %A A. A. Afanasenkov %A T. A. Khmel %T Validation of the model of hybrid detonation of hydrogen-air mixtures with aluminium particles %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 177-186 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a1/ %G ru %F CHFMJ_2024_9_2_a1
A. A. Afanasenkov; T. A. Khmel. Validation of the model of hybrid detonation of hydrogen-air mixtures with aluminium particles. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 2, pp. 177-186. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_2_a1/
[1] Khasainov A., Veyssiere B., “Steady, plane, double-front detonations in gaseous detonable mixtures containing a suspension of aluminum particles”, Dynamics of Explosions, AIAA, 1988, 284–299
[2] Veyssiere B., Ingignoli W., “Existence of the detonation cellular structure in two-phase hybrid mixtures”, Shock Waves, 12:4 (2003), 291–299 | DOI
[3] Veyssiere B., Khasainov B. A., “A model for steady, plane, double-front detonations (DFD) in gaseous explosive mixtures with aluminum particles in suspension”, Combustion and Flame, 85:1–2 (1991), 241–253 | DOI
[4] Veyssiere B., Khasainov B. A., “Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures”, Shock Waves, 4:4 (1995), 171–186 | DOI
[5] Khasainov B. A., Veyssiere B., “Initiation of detonation regimes in hybrid two-phase mixtures”, Shock Waves, 5:1 (1996), 9–15 | DOI
[6] Khmel T. A., Lavruk S. A., “Development of a model of hybrid detonation in a mixture of oxygen–hydrogen–argon with aluminum particles”, Combustion and Explosion, 16:1 (2023), 63–69 | MR
[7] Khmel T.A., Lavruk S.A., Afanasenkov A.A., “Propagation of hybrid detonation in a hydrogen-oxygen mixture with aluminum particles in a channel with expansion”, Chelyabinsk Physical and Mathematical Journal, 8:3 (2023), 371–386 | DOI | MR
[8] Khmel T.A., Lavruk S.A., “Structure and propagation of Chapman — Jouget waves in a hydrogen-oxygen mixture with aluminum particles”, Chelyabinsk Physical and Mathematical Journal, 8:4 (2023), 583–590 | MR
[9] Bedarev I.A., Rylova K.V., Fedorov A.V., “Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen-air mixtures”, Combustion, Explosion and Shock Waves, 51:5 (2015), 528–539 | DOI
[10] Bedarev I. A., Temerbekov V. M., “Estimation of the energy of detonation initiation in a hydrogen-oxygen mixture by a high velocity projectile”, Thermal Science, 25 (2021), 3889–3897 | DOI
[11] Bedarev I. A., Temerbekov V. M., “Modeling of attenuation and suppression of cellular detonation in the hydrogen-air mixture by circular obstacles”, International Journal of Hydrogen Energy, 47 (2022), 38455–38467 | DOI | MR
[12] Ciccarelli G., Ginsberg T., Boccio J., Economos C., Sato K., Kinoshita M., “Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures”, Combustion and Flame, 99 (1994), 212–220 | DOI
[13] Vasil’ev V.M., Vol’pert A.I., Klychnikov L.V., Petrov Y.M., Salakatova L.S., Stesik L.N., “Calculation of fuel-air mixture detonation parameters”, Combustion, Explosion and Shock Waves, 16:3 (1980), 354–356 | DOI
[14] Khmel T.A., Lavruk S.A., “Modeling of cellular detonation in gas suspensions of submicron aluminum particles with different distributions of concentration”, Combustion, Explosion and Shock Waves, 58:3 (2022), 253–268 | DOI | DOI | Zbl
[15] Khmel T.A., Lavruk S.A., “Modeling of cellular detonation in gas suspensions of two fractions of aluminum nanoparticles”, Combustion, Explosion and Shock Waves, 56:2 (2020), 188–197 | DOI
[16] Hosoda H., Hayashi A. K., Yamada E., “Numerical analysis on combustion characteristics of nano aluiminum particle-oxygen Two-Phase detonation”, Science and Technology of Energetic Materials, 74 (2013), 34–40
[17] Benedick W. B., Knystautas R., Lee J. H. S., “Large-scale experiments on the transmission of fuel-air detonations from two-dimensional channels”, Progress in Astronautics and Aeronautics, 94 (1984), 546–555