Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_1_a8, author = {T. K. Yuldashev and A. K. Fayziyev and F. D. Rakhmonov}, title = {Mixed problem for a nonlinear impulsive differential equation of parabolic type}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {111--123}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a8/} }
TY - JOUR AU - T. K. Yuldashev AU - A. K. Fayziyev AU - F. D. Rakhmonov TI - Mixed problem for a nonlinear impulsive differential equation of parabolic type JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 111 EP - 123 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a8/ LA - en ID - CHFMJ_2024_9_1_a8 ER -
%0 Journal Article %A T. K. Yuldashev %A A. K. Fayziyev %A F. D. Rakhmonov %T Mixed problem for a nonlinear impulsive differential equation of parabolic type %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 111-123 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a8/ %G en %F CHFMJ_2024_9_1_a8
T. K. Yuldashev; A. K. Fayziyev; F. D. Rakhmonov. Mixed problem for a nonlinear impulsive differential equation of parabolic type. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 111-123. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a8/
[1] Nguyen H., Reynen J., “A space-time least-square finite element scheme for advection-diffusion equations”, Computer Methods in Applied Mechanics and Engineering, 42:3 (1984), 331–342 | DOI | MR | Zbl
[2] Pinkas G., “Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge”, Artificial Intelligence, 77:2 (1995), 203–247 | DOI | MR | Zbl
[3] Van Dorsselaer H., Lubich C., “Inertial manifolds of parabolic differential equations under high-order discretizations”, Journal of Numerical Analysis, 19:3 (1999), 455–471 | DOI | MR | Zbl
[4] Ivanchov N.I., “Boundary value problems for a parabolic equation with integral conditions”, Differential Equations, 40:4 (2004), 591–609 | DOI | MR
[5] Pohozaev S.I., “On the dependence of the critical exponent of the nonlinear heat equation on the initial function”, Differential Equations, 47:7 (2011), 955–962 | DOI | MR | Zbl
[6] Pokhozhaev S.I., “Critical nonlinearities in partial differential equations”, Russian Journal of Mathematical Physics, 20:4 (2013), 476–491 | DOI | MR | Zbl
[7] Galaktionov V.A., Mitidieri E., Pohozaev S., “Global sign-changing solutions of a higher order semilinear heat equation in the subcritical Fujita range”, Advanced Nonlinear Studies, 12:3 (2012), 569–596 | DOI | MR | Zbl
[8] Galaktionov V.A., Mitidieri E., Pohozaev S.I., “Classification of global and blow-up sign-changing solutions of a semilinear heat equation in the subcritical Fujita range: second-order diffusion”, Advanced Nonlinear Studies, 14:1 (2014), 1–29 | DOI | MR
[9] Yuldashev T.K., “Mixed value problem for a nonlinear differential equation of fourth order with small parameter on the parabolic operator”, Computational Mathematics and. Mathematical Physics, 51:9 (2011), 1596–1604 | DOI | MR
[10] Yuldashev T.K., “Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power”, Computational Mathematics and Mathematical Physics, 52:1 (2012), 105–116 | DOI | MR | Zbl
[11] Yuldashev T.K., “Nonlinear optimal control of thermal processes in a nonlinear Inverse problem”, Lobachevskii Journal of Mathematics, 41:1 (2020), 124–136 | DOI | MR | Zbl
[12] Denk R., Kaip M., “Application to parabolic differential equations”, General Parabolic Mixed Order Systems in $L_p$ and Applications, Birkhäuser, Cham, 2013 | DOI | MR
[13] Mulla M., Gaweash A., Bakur H., “Numerical solution of parabolic partial differential equations (PDEs) in one and two space variable”, Journal of Applied Mathematics and Physics, 10:2 (2022), 311–321 | DOI
[14] Zonga Y., Heb Q., Tartakovsky A.M., Physics-informed neural network method for parabolic differential equations with sharply perturbed initial conditions, 2022, arXiv: 2208.08635[math.NA] | MR
[15] Halanay A., Wexler D., Teoria calitativa a sistemelor cu impulsuri, Editura Academiei Republicii Socialiste Romania, Bucuresti, 1968 | MR | Zbl
[16] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989 | MR | Zbl
[17] Samoilenko A.M., Perestyk N.A., Impulsive Differential Equations, World Sciences, Singapore, 1995 | MR | Zbl
[18] Perestyk N.A., Plotnikov V.A., Samoilenko A.M., Skripnik N.V., Differential Equations with Impulse Effect: Multivalued Right-Hand Sides with Discontinuities, Walter de Gruter Co., Berlin, 2011 | MR
[19] Benchohra M., Henderson J., Ntouyas S.K., Impulsive Differential Equations and Inclusions, Hindawi Publ., New York, 2006 | MR | Zbl
[20] Catlla J., Schaeffer D.G., Witelski Th.P., Monson E.E., Lin A.L., “On spiking models for synaptic activity and impulsive differential equations”, SIAM Review, 50:3 (2008), 553–569 | DOI | MR | Zbl
[21] Stamova I., Stamov G., “Impulsive biological models”, Applied Impulsive Mathematical Models, Springer, Cham, 2016 | MR | Zbl
[22] Anguraj A., Arjunan M.M., “Existence and uniqueness of mild and classical solutions of impulsive evolution equations”, Electronic Journal of Differential Equations, 2005 (2005), 111 | MR
[23] Bin L., Xinzhi L., Xiaoxin L., “Robust global exponential stability of uncertain impulsive systems”, Acta Mathematika Scientia, 25:1 (2005), 161–169 | DOI | MR | Zbl
[24] Bai Ch., Yang D., “Existence of solutions for second-order nonlinear impulsive differential equations with periodic boundary value conditions”, Boundary Value Problems, 2007 (2007), 41589 | MR | Zbl
[25] Chen J., Tisdell Ch.C., Yuan R., “On the solvability of periodic boundary value problems with impulse”, Journal of of Mathematical Analysis and Applications, 331 (2007), 902–912 | DOI | MR | Zbl
[26] Catlla J., Schaeffer D.G., Witelski Th.P., Monson E.E., Lin A.L., “On spiking models for synaptic activity and impulsive differential equations”, SIAM Review, 50:3 (2008), 553–569 | DOI | MR | Zbl
[27] Benchohra M., Salimani B.A., “Existence and uniqueness of solutions to impulsive fractional differential equations”, Electronic Journal of Differential Equations, 2009:10 (2009), 1–11 | MR | Zbl
[28] Li M., Han M., “Existence for neutral impulsive functional differential equations with nonlocal conditions”, Indagationes Mathematcae, 20:3 (2009), 435–451 | DOI | MR | Zbl
[29] Ji Sh., Wen Sh., “Nonlocal Cauchy problem for impulsive differential equations in Banach spaces”, International Journal of Nonlinear Sciences, 10:1 (2010), 88–95 | MR | Zbl
[30] Fecken M., Zhong Y., Wang J., “On the concept and existence of solutions for impulsive fractional differential equations”, Communications in Non-Linear Science and Numerical Simulation, 17:7 (2012), 3050–3060 | DOI | MR
[31] Antunes D., Hespanha J., Silvestre C., “Stability of networked control systems with asynchronous renewal links: An impulsive systems approach”, Automatica, 49:2 (2013), 402–413 | DOI | MR | Zbl
[32] Gao Z., Yang L., Liu G., “Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions”, Applied Mathematics, 4:6 (2013), 859–863 | DOI | MR
[33] Mardanov M.J., Sharifov Ya.A., Habib M.H., “Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions”, Electronic Journal of Differential Equations, 2014 (2014), 259 | MR | Zbl
[34] Yuldashev T.K., Ergashev T.G., Abduvahobov T.A., “Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima”, Chelyabinsk Physical and Mathematical Journal, 7:3 (2022), 312–325 | MR | Zbl
[35] Yuldashev T.K., Fayziev A.K., “On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima”, Nanosystems: Physics. Chemistry. Mathematics, 13:1 (2022), 36–44 | DOI
[36] Yuldashev T.K., Fayziev A.K., “Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector”, Lobachevskii Journal Mathematics, 43:8 (2022), 2332–2340 | DOI | MR | Zbl
[37] Yuldashev T.K., Fayziyev A.K., “Inverse problem for a second order impulsive system of integro-differential equations with two redefinition vectors and mixed maxima”, Nanosystems: Physics. Chemistry. Mathematics, 14:1 (2023), 13–21 | DOI
[38] Yuldashev T.K., Saburov Kh.Kh., Abduvahobov T.A., “Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equationswith maxima”, Chelyabinsk Physical and Mathematical Journal, 7:1 (2022), 113–122 | MR
[39] Cooke C.H., Kroll J., “The existence of periodic solutions to certain impulsive differential equations”, Computers and Mathematics with Applications, 44:5–6 (2002), 667–676 | DOI | MR | Zbl
[40] Li X., Bohner M., Wang C.-K., “Impulsive differential equations: Periodic solutions and applications”, Automatica, 52 (2015), 173–178 | DOI | MR
[41] Yuldashev T.K., “Periodic solutions for an impulsive system of integro-differential equations with maxima”, Bulettin of Samara State Technical University. Ser. Physical and Mathematical Sciences, 26:2 (2022), 368–379 | MR | Zbl
[42] Yuldashev T.K., “Periodic solutions for an impulsive system of nonlinear differential equations with maxima”, Nanosystems: Physics. Chemistry. Mathematics, 13:2 (2022), 135–141 | DOI | MR
[43] Yuldashev T.K., Sulaimonov F.U., “Periodic solutions of second order impulsive system for an integro-differential equations with maxima”, Lobachevskii Journal of Mathematics, 43:12 (2022), 3674–3685 | DOI | MR | Zbl
[44] Fayziyev A.K., Abdullozhonova A.N., Yuldashev T.K., “Inverse problem for Whitham type multi-dimensional differential equation with impulse effects”, Lobachevskii Journal of Mathematics, 44:2 (2023), 570–579 | DOI | MR | Zbl
[45] Yuldashev T.K., Ergashev T.G., Fayziyev A.K., “Coefficient inverse problem for Whitham type two-dimensional differential equation with impulse effects”, Chelyabinsk Physical and Mathematical Journal, 8:2 (2023), 238–248 | MR | Zbl
[46] Yuldashev T.K., Fayziyev A.K., “Determination of the coefficient function in a Whitham type nonlinear differential equation with impulse effects”, Nanosystems: Physics. Chemistry. Mathematics, 14:3 (2023), 312–320 | DOI