Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_1_a5, author = {G. D. Turova}, title = {Group of symmetries for the dynamics system of equations of rarefied two-phase medium}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {77--89}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a5/} }
TY - JOUR AU - G. D. Turova TI - Group of symmetries for the dynamics system of equations of rarefied two-phase medium JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 77 EP - 89 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a5/ LA - ru ID - CHFMJ_2024_9_1_a5 ER -
G. D. Turova. Group of symmetries for the dynamics system of equations of rarefied two-phase medium. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a5/
[1] Yanenko N.N., Soloukhin R.I., Papyrin A.N., Fomin V.M., Supersonic two-phase flows under conditions of the velocity nonequilibrium of particles, Nauka Publ., Novosibirsk, 1980 (In Russ.)
[2] Fedorov A.V., Fomin P.A., Fomin V.M., Tropin D.A., Chen J.-R., Physical and mathematical modeling of detonation quenching by clouds of fine particles, Novosibirk State University of Architecture and Civil Engineering (Sibstrin), Novosibirsk, 2011 (In Russ.)
[3] Ovsyannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | MR | Zbl
[4] Olver P., Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986 | MR | Zbl
[5] Lagno V.I., Spichak S.V., Stogniy V.I., Symmetry analysis of the evolution type equations, Institute of Computer Research, Moscow; Izhevsk, 2004 (In Russ.) | MR
[6] Bocharov A.I., Verbovetskii A.M., Vinogradov A.M. et al., Symmetries and conservation laws of mathematical physics equations, Factorial Press Publ., Moscow, 2005 (In Russ.)
[7] Panov A.V., “Group classification for equations system of two-phase medium mechanics”, Bulletin of Chelyabinsk State University, 2011, no. 26, 38–-48 (In Russ.)
[8] Fedorov V.E., Panov A.V, “Invariant and partially invariant solutions of the system of equations of a two-phase medium mechanics”, Bulletin of Chelyabinsk State University, 2011, no. 38, 65–69 (In Russ.)
[9] Fedorov V. E., Filin N. V., “Invariant and partially invariant submodels of the equations system describing a dynamics of two gases mixture”, Materials Science Forum, 845 (2016), 174–177 | DOI
[10] Fedorov V. E., “Nonlinear self-adjointness and conservation laws for some equation systems of two-phase media”, Journal of Physics: Conference Series, 1268 (2019), 012068 | DOI
[11] Fedorov V. E., Panov A. V., Fedorov E. V., “Study by methods of group analysis of the system of equations for dynamic of non-isothermal mixture of two gases”, Lobachevskii Journal of Mathematics, 43:1 (2022), 207–218 | DOI | MR | Zbl
[12] Rakhmatulin Kh.A., “Fundamentals of gasdynamics of interpenetrating motions of compressible media”, Applied mathematics and mechanics, 20:2 (1956), 184–195 (In Russ.) | MR
[13] Baer M. F., Nunziato J., “Two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, International Journal of Multiphase Flow, 12 (1986), 861–889 | DOI | MR | Zbl
[14] Zhilin A. A., Fedorov A. V., “Interaction of shock waves with a combined discontinuity in two-phase media”, Journal of Applied Mechanics and Technical Physics, 43:3 (2002), 45–58 | DOI | MR | Zbl
[15] Kamke E., Differentialgleichungen: Losungsmethoden und Losungen. I. Gewohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977 | MR | Zbl