Group of symmetries for the dynamics system of equations of rarefied two-phase medium
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 77-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The symmetries of the system of equations of a two-phase medium are found, where the first phase is gas and the second one is solid particles. The second phase is considered rarefied, it is expressed in the absence of pressure in the equations of motion of the second phase. The medium is assumed to be nonisothermal. Using the methods of group analysis, the Lie algebras of symmetries of the model under study are found in the one-dimensional and three-dimensional cases. The paper describes in detail the process of searching for symmetries in the case of equations of state for a perfect gas. Some partially invariant solutions are found for the one-domensional system.
Keywords: rarefied gas suspension, two-phase fluid, symmetry group, Lie algebra.
@article{CHFMJ_2024_9_1_a5,
     author = {G. D. Turova},
     title = {Group of symmetries for the dynamics system of equations of rarefied two-phase medium},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a5/}
}
TY  - JOUR
AU  - G. D. Turova
TI  - Group of symmetries for the dynamics system of equations of rarefied two-phase medium
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 77
EP  - 89
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a5/
LA  - ru
ID  - CHFMJ_2024_9_1_a5
ER  - 
%0 Journal Article
%A G. D. Turova
%T Group of symmetries for the dynamics system of equations of rarefied two-phase medium
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 77-89
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a5/
%G ru
%F CHFMJ_2024_9_1_a5
G. D. Turova. Group of symmetries for the dynamics system of equations of rarefied two-phase medium. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a5/

[1] Yanenko N.N., Soloukhin R.I., Papyrin A.N., Fomin V.M., Supersonic two-phase flows under conditions of the velocity nonequilibrium of particles, Nauka Publ., Novosibirsk, 1980 (In Russ.)

[2] Fedorov A.V., Fomin P.A., Fomin V.M., Tropin D.A., Chen J.-R., Physical and mathematical modeling of detonation quenching by clouds of fine particles, Novosibirk State University of Architecture and Civil Engineering (Sibstrin), Novosibirsk, 2011 (In Russ.)

[3] Ovsyannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | MR | Zbl

[4] Olver P., Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986 | MR | Zbl

[5] Lagno V.I., Spichak S.V., Stogniy V.I., Symmetry analysis of the evolution type equations, Institute of Computer Research, Moscow; Izhevsk, 2004 (In Russ.) | MR

[6] Bocharov A.I., Verbovetskii A.M., Vinogradov A.M. et al., Symmetries and conservation laws of mathematical physics equations, Factorial Press Publ., Moscow, 2005 (In Russ.)

[7] Panov A.V., “Group classification for equations system of two-phase medium mechanics”, Bulletin of Chelyabinsk State University, 2011, no. 26, 38–-48 (In Russ.)

[8] Fedorov V.E., Panov A.V, “Invariant and partially invariant solutions of the system of equations of a two-phase medium mechanics”, Bulletin of Chelyabinsk State University, 2011, no. 38, 65–69 (In Russ.)

[9] Fedorov V. E., Filin N. V., “Invariant and partially invariant submodels of the equations system describing a dynamics of two gases mixture”, Materials Science Forum, 845 (2016), 174–177 | DOI

[10] Fedorov V. E., “Nonlinear self-adjointness and conservation laws for some equation systems of two-phase media”, Journal of Physics: Conference Series, 1268 (2019), 012068 | DOI

[11] Fedorov V. E., Panov A. V., Fedorov E. V., “Study by methods of group analysis of the system of equations for dynamic of non-isothermal mixture of two gases”, Lobachevskii Journal of Mathematics, 43:1 (2022), 207–218 | DOI | MR | Zbl

[12] Rakhmatulin Kh.A., “Fundamentals of gasdynamics of interpenetrating motions of compressible media”, Applied mathematics and mechanics, 20:2 (1956), 184–195 (In Russ.) | MR

[13] Baer M. F., Nunziato J., “Two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, International Journal of Multiphase Flow, 12 (1986), 861–889 | DOI | MR | Zbl

[14] Zhilin A. A., Fedorov A. V., “Interaction of shock waves with a combined discontinuity in two-phase media”, Journal of Applied Mechanics and Technical Physics, 43:3 (2002), 45–58 | DOI | MR | Zbl

[15] Kamke E., Differentialgleichungen: Losungsmethoden und Losungen. I. Gewohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977 | MR | Zbl