Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 63-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The non-smooth features of the minimax (generalized) solution of the considered class of Dirichlet problems for equations of Hamiltonian type are due to the existence of pseudo-vertices — singular points of the boundary of the boundary set. The paper develops analytical and numerical methods for constructing pseudo-vertices and their accompanying constructive elements, which include local diffeomorphisms generating pseudo-vertices, as well as markers — numerical characteristics of these points. For markers, an equation with a characteristic structure inherent in equations for fixed points is obtained. An iterative procedure based on Newton's method for the numerical construction of its solution is proposed. The convergence of the procedure to the pseudovertex marker is proved. An example of the numerical-analytical construction of a minimax solution is given, illustrating the effectiveness of the developed approaches for constructing nonsmooth solutions of boundary value problems.
Keywords: Hamilton — Jacobi equation, minimax solution, speed, singular set, wave front, diffeomorphism, eikonal, pseudovertex.
@article{CHFMJ_2024_9_1_a4,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the {Hamilton~---} {Jacobi} equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {63--76},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 63
EP  - 76
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/
LA  - ru
ID  - CHFMJ_2024_9_1_a4
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 63-76
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/
%G ru
%F CHFMJ_2024_9_1_a4
P. D. Lebedev; A. A. Uspenskii. Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 63-76. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/

[1] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton-Jacobi equations”, Transactions of the American Mathematical Society, 277:1 (1983), 1–42 | DOI | MR | Zbl

[2] Subbotin A.I., Generalized solutions of first-order PDEs. Perspectives of dynamic optimization, Institute of Computer Technologies, Moscow; Izhevsk, 2003 (In Russ.)

[3] Krasovskij N.N., Subbotin A.I., Positional differential games, Nauka Publ., Moscow, 1974 (In Russ.) | MR

[4] Arnold V.I., Singularities of caustics and wavefronts, Fazis Publ., Moscow, 1996 (In Russ.)

[5] Bröcker Th., Lander L., Differentiable Germs and Catastrophes, Cambridge University Press, London, 1975 | MR | Zbl

[6] Uspenskii A.A., Lebedev P.D., “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set”, Bulletin of the Udmurt University. Mathematics. Mechanics. Computer science, 28:1 (2018), 59–73 (In Russ.) | MR | Zbl

[7] Kruzhkov S.N., “Generalized solutions of the Hamilton — Jacobi equations of eikonal type. I”, Mathematics of the USSR — Sbornik, 27:3 (1975), 406–446 | DOI | MR | Zbl

[8] Uspenskii A.A., Lebedev P.D., “On singularity structure of minimax solution to Dirichlet problem for eikonal type equation with discontinuous curvature of boundary set”, Ufa Mathematical Journal, 13:3 (2021), 126–151 | DOI | MR | Zbl

[9] Lebedev P.D., Uspenskii A.A., “Analytical and computing constructing of optimal result function in a class of velocity problems”, Applied Mathematics and Informatics, 2007, no. 27, 65–79 (In Russ.)

[10] Uspenskii A.A., “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Proceedings of the Institute of Mathematics and Mechanics of Ural Branch of RAS, 21:1 (2015), 250–263 (In Russ.) | MR

[11] Alimov A.R., Tsar’kov I.G., “Connectedness and solarity in problems of best and near-best approximation”, Russian Mathematical Surveys, 1:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[12] Efimov N.V., Stechkin S.B., “Some properties of Chebyshev sets”, Reports of the Academy of Sciences of the USSR, 118:1 (1958), 17–19 (In Russ.) | Zbl

[13] Sedykh V. D., “On the topology of symmetry sets of smooth submanifolds in $\mathbb{R}^{k}$”, Advanced Studies in Pure Mathematics, 43 (2006), 401–419 | DOI | MR | Zbl

[14] Ushakov V.N., Uspenskii A.A., “$\alpha$-Sets in finite dimensional Euclidean spaces and their properties”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Sciences, 26:1 (2016), 95–120 (In Russ.) | MR | Zbl

[15] Lebedev P.D., Uspenskii A.A., “Construction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundary”, News of Institute of Mathematics and Informatics of Udmurt State University, 53 (2019), 98–114 (In Russ.) | Zbl

[16] Nemytskii V.V., “Fixed-point method in analysis”, Achievements of mathematical sciences, 1 (1936), 141–174 (In Russ.) | Zbl

[17] Bakhvalov N.S., Zhidkov N.P., Kobel'kov G.M., Numerical methods, Binom. Laboratoriya zhahiy, Moscow, 2008 (In Russ.) | MR

[18] Lebedev P.D., Uspenskii A.A., “Program for constructing wave fronts and the function of the Euclidean distance to a compact nonconvex set” (In Russ.) (Certificate of state registration of the computer program no. 2017662074, October 27, 2017)