Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_1_a4, author = {P. D. Lebedev and A. A. Uspenskii}, title = {Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the {Hamilton~---} {Jacobi} equations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {63--76}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/} }
TY - JOUR AU - P. D. Lebedev AU - A. A. Uspenskii TI - Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 63 EP - 76 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/ LA - ru ID - CHFMJ_2024_9_1_a4 ER -
%0 Journal Article %A P. D. Lebedev %A A. A. Uspenskii %T Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 63-76 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/ %G ru %F CHFMJ_2024_9_1_a4
P. D. Lebedev; A. A. Uspenskii. Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 63-76. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/
[1] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton-Jacobi equations”, Transactions of the American Mathematical Society, 277:1 (1983), 1–42 | DOI | MR | Zbl
[2] Subbotin A.I., Generalized solutions of first-order PDEs. Perspectives of dynamic optimization, Institute of Computer Technologies, Moscow; Izhevsk, 2003 (In Russ.)
[3] Krasovskij N.N., Subbotin A.I., Positional differential games, Nauka Publ., Moscow, 1974 (In Russ.) | MR
[4] Arnold V.I., Singularities of caustics and wavefronts, Fazis Publ., Moscow, 1996 (In Russ.)
[5] Bröcker Th., Lander L., Differentiable Germs and Catastrophes, Cambridge University Press, London, 1975 | MR | Zbl
[6] Uspenskii A.A., Lebedev P.D., “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set”, Bulletin of the Udmurt University. Mathematics. Mechanics. Computer science, 28:1 (2018), 59–73 (In Russ.) | MR | Zbl
[7] Kruzhkov S.N., “Generalized solutions of the Hamilton — Jacobi equations of eikonal type. I”, Mathematics of the USSR — Sbornik, 27:3 (1975), 406–446 | DOI | MR | Zbl
[8] Uspenskii A.A., Lebedev P.D., “On singularity structure of minimax solution to Dirichlet problem for eikonal type equation with discontinuous curvature of boundary set”, Ufa Mathematical Journal, 13:3 (2021), 126–151 | DOI | MR | Zbl
[9] Lebedev P.D., Uspenskii A.A., “Analytical and computing constructing of optimal result function in a class of velocity problems”, Applied Mathematics and Informatics, 2007, no. 27, 65–79 (In Russ.)
[10] Uspenskii A.A., “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Proceedings of the Institute of Mathematics and Mechanics of Ural Branch of RAS, 21:1 (2015), 250–263 (In Russ.) | MR
[11] Alimov A.R., Tsar’kov I.G., “Connectedness and solarity in problems of best and near-best approximation”, Russian Mathematical Surveys, 1:1 (2016), 1–77 | DOI | DOI | MR | Zbl
[12] Efimov N.V., Stechkin S.B., “Some properties of Chebyshev sets”, Reports of the Academy of Sciences of the USSR, 118:1 (1958), 17–19 (In Russ.) | Zbl
[13] Sedykh V. D., “On the topology of symmetry sets of smooth submanifolds in $\mathbb{R}^{k}$”, Advanced Studies in Pure Mathematics, 43 (2006), 401–419 | DOI | MR | Zbl
[14] Ushakov V.N., Uspenskii A.A., “$\alpha$-Sets in finite dimensional Euclidean spaces and their properties”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Sciences, 26:1 (2016), 95–120 (In Russ.) | MR | Zbl
[15] Lebedev P.D., Uspenskii A.A., “Construction of a solution to a velocity problem in the case of violation of the smoothness of the curvature of the target set boundary”, News of Institute of Mathematics and Informatics of Udmurt State University, 53 (2019), 98–114 (In Russ.) | Zbl
[16] Nemytskii V.V., “Fixed-point method in analysis”, Achievements of mathematical sciences, 1 (1936), 141–174 (In Russ.) | Zbl
[17] Bakhvalov N.S., Zhidkov N.P., Kobel'kov G.M., Numerical methods, Binom. Laboratoriya zhahiy, Moscow, 2008 (In Russ.) | MR
[18] Lebedev P.D., Uspenskii A.A., “Program for constructing wave fronts and the function of the Euclidean distance to a compact nonconvex set” (In Russ.) (Certificate of state registration of the computer program no. 2017662074, October 27, 2017)