Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 63-76

Voir la notice de l'article provenant de la source Math-Net.Ru

The non-smooth features of the minimax (generalized) solution of the considered class of Dirichlet problems for equations of Hamiltonian type are due to the existence of pseudo-vertices — singular points of the boundary of the boundary set. The paper develops analytical and numerical methods for constructing pseudo-vertices and their accompanying constructive elements, which include local diffeomorphisms generating pseudo-vertices, as well as markers — numerical characteristics of these points. For markers, an equation with a characteristic structure inherent in equations for fixed points is obtained. An iterative procedure based on Newton's method for the numerical construction of its solution is proposed. The convergence of the procedure to the pseudovertex marker is proved. An example of the numerical-analytical construction of a minimax solution is given, illustrating the effectiveness of the developed approaches for constructing nonsmooth solutions of boundary value problems.
Keywords: Hamilton — Jacobi equation, minimax solution, speed, singular set, wave front, diffeomorphism, eikonal, pseudovertex.
@article{CHFMJ_2024_9_1_a4,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the {Hamilton~---} {Jacobi} equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {63--76},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 63
EP  - 76
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/
LA  - ru
ID  - CHFMJ_2024_9_1_a4
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 63-76
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/
%G ru
%F CHFMJ_2024_9_1_a4
P. D. Lebedev; A. A. Uspenskii. Newton's method in constructing a singular set of a minimax solution in a class of boundary value problems for the Hamilton~--- Jacobi equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 63-76. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a4/