On solvability of a general elliptic boundary value problem in H\"older~--- Zygmund spaces with variable smoothness
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fredholm solvability of an elliptic boundary value problem, corresponding to the Green operator from the L. Boutet de Monvel algebra on a smooth manifold with compact boundary is studied in the paper. The Hölder — Zygmund spaces with variable smoothness are considered as function spaces. Sufficient conditions are given for the Fredholm property of the Green operator from the considered algebra in such spaces.
Keywords: Boutet de Monvel algebra, Fredholm property, Hölder-Zygmund spaces of variable smoothness, smooth manifold with compact boundary.
@article{CHFMJ_2024_9_1_a3,
     author = {V. D. Kryakvin and G. P. Omarova},
     title = {On solvability of a general elliptic boundary value problem in {H\"older~---} {Zygmund} spaces with variable smoothness},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a3/}
}
TY  - JOUR
AU  - V. D. Kryakvin
AU  - G. P. Omarova
TI  - On solvability of a general elliptic boundary value problem in H\"older~--- Zygmund spaces with variable smoothness
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 50
EP  - 62
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a3/
LA  - ru
ID  - CHFMJ_2024_9_1_a3
ER  - 
%0 Journal Article
%A V. D. Kryakvin
%A G. P. Omarova
%T On solvability of a general elliptic boundary value problem in H\"older~--- Zygmund spaces with variable smoothness
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 50-62
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a3/
%G ru
%F CHFMJ_2024_9_1_a3
V. D. Kryakvin; G. P. Omarova. On solvability of a general elliptic boundary value problem in H\"older~--- Zygmund spaces with variable smoothness. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 50-62. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a3/

[1] Eskin G.I., Boundary Value Problems for Elliptic Pseudodifferential Equations, American Mathematical Society, 1981 | MR | MR | Zbl

[2] Boutet de Monvel L., “Boundary problems for pseudo-differential operators”, Acta Mathematica, 126 (1971), 11–51 | DOI | MR | Zbl

[3] Rempel S., Schulze B.-W., Index Theory of Elliptic Boundary Problems, Akademie Verlag, Berlin, 1982 | MR | MR

[4] Grubb G., “Pseudo-differential boundary problems in $L_p$-spaces”, Communications in Partial Differential Equations, 15 (1990), 289–340 | DOI | MR

[5] Shargorodsky E.M., “Boundary value problems for elliptic pseudodifferential operators on manifolds”, Proceedings of A. Razmadze Mathematical Institute, 105 (1995), 108–132 (In Russ.) | MR

[6] Johnsen J., “Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel — Lizorkin spaces”, Mathematica Scandinavica, 79 (1996), 25–85 | DOI | MR

[7] Brenner A. V., Shargorodsky E. M., “Boundary Value Problems for Elliptic Pseudodierential Operators”, Partial Differential Equations IX, Encyclopaedia of Mathematical Sciences, 79, eds. M. S. Agranovich, Y. V. Egorov, M. A. Shubin, Springer, Berlin, Heidelberg, 1997, 145–215 | DOI | MR | Zbl

[8] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl

[9] Krylov N.V., Lectures on Elliptic and Parabolic Equations in Hölder Spaces, American Mathematical Society, 1996 | MR | MR

[10] Kryakvin V.D., “A general boundary value problem for a domain with noncompact boundary in weighted Hölder spaces”, Soviet Mathematics (Iz. VUZ), 33:1 (1989), 59–68 | MR | Zbl

[11] Bies P. M., Gorka P., “Schauder theory in variable Hölder spaces”, Journal of Differential Equations, 259 (2015), 2850–2883 | DOI | MR | Zbl

[12] Zygmund A., Trigonometric Series, University Press, New York, Cambridge, 1959 | MR | Zbl

[13] Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983 (In Russ.)

[14] Konenkov A.N., “The Dirichlet problem in Zygmund spaces in a square”, Doklady Mathematics, 75:1 (2007), 16–19 | DOI | MR | Zbl

[15] Konenkov A.N., “Boundary value problems for parabolic equations in Zygmund spaces”, Doklady Mathematics, 77:1 (2008), 9–12 | DOI | MR | Zbl

[16] Kryakvin V. D., Omarova G. P., “The Boutet de Monvel operators in variable Hölder — Zygmund spaces on $\mathbb R^n_+$”, Bulletin of Udmurt State University. Series Mathemtica. Mechanics. Computer Sciences, 31:2 (2021), 194–209 | MR | Zbl

[17] Hörmander L., The Analysis of Linear Partial Differential Operators, v. 1–4, Springer-Verlag, Berlin, 1983–1985 | MR

[18] Palamodov V.P., “Generalized functions and harmonic analysis”, Results of science and technology. Contemporary problems of mathematics. Fundamental directions, 72 (1991), 5–134 | MR

[19] Kryakvin V., Rabinovich V., “Pseudodifferential operators in weighted Hölder — Zygmund spaces of the variable smoothness”, Operator Theory: Advances and Applications, 259 (2017), 511–531 | DOI | MR | Zbl

[20] Peetre J., New Thoughts on Besov spaces, Duke University, Durham, 1976 | MR

[21] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993 | MR

[22] Kryakvin V.D., “Boundedness of pseudodifferential operators in Hölder–Zygmund spaces of variable order”, Siberian Mathematical Journal, 55:6 (2014), 1073–1083 | DOI | MR | Zbl

[23] Kreĭn S.G., Petunin Yu.I., “Scales of Banach spaces”, Russian Mathematical Survey, 21:2 (1966), 85–159 | DOI | MR | Zbl

[24] Shubin M.A., Pseudo-Differential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987 | MR