Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_1_a11, author = {A. Yu. Popkov and Yu. A. Dubnov and Yu. S. Popkov}, title = {Entropy-randomized estimation of nonlinear dynamical model parameters on observation of dependent process}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {144--159}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a11/} }
TY - JOUR AU - A. Yu. Popkov AU - Yu. A. Dubnov AU - Yu. S. Popkov TI - Entropy-randomized estimation of nonlinear dynamical model parameters on observation of dependent process JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 144 EP - 159 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a11/ LA - ru ID - CHFMJ_2024_9_1_a11 ER -
%0 Journal Article %A A. Yu. Popkov %A Yu. A. Dubnov %A Yu. S. Popkov %T Entropy-randomized estimation of nonlinear dynamical model parameters on observation of dependent process %J Čelâbinskij fiziko-matematičeskij žurnal %D 2024 %P 144-159 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a11/ %G ru %F CHFMJ_2024_9_1_a11
A. Yu. Popkov; Yu. A. Dubnov; Yu. S. Popkov. Entropy-randomized estimation of nonlinear dynamical model parameters on observation of dependent process. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 144-159. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a11/
[1] Popkov Y.S., Popkov A.Y., Dubnov Y.A., Randomized machine learning under limited amount of data: from empiric probability to entropy randomization, Lenand Publ., Moscow, 2019 (In Russ.)
[2] Popkov Y. S., Dubnov Y. A., Popkov A. Y., “Introduction to the theory of randomized machine learning”, Learning Systems: From Theory to Practice, eds. V. Sgurev, V. Piuri, V. Jotsov, Springer International Publishing, Cham, 2018 | MR
[3] Popkov Yu. S., Dubnov Yu. A., Popkov A. Yu., “Randomized machine learning: Statement, solution, applications”, Proc. Intelligent Systems (IS) (2016 IEEE 8th International Conference), 2016, 27–39 | MR
[4] Popkov Y., Popkov A., “New methods of entropy-robust estimation for randomized models under limited data”, Entropy, 16:2 (2014), 675–698 | DOI
[5] Popkov Y. S, Dubnov Y. A., Popkov A. Y., “New method of randomized forecasting using entropy-robust estimation: Application to the world population prediction”, Mathematics, 4:1 (2016), 16 | DOI | Zbl
[6] Popkov Y. S., Volkovich Z., Dubnov Y. A., Avros R., Ravve E, “Entropy {2}-soft classification of objects”, Entropy, 19:4 (2017), 178 | DOI | MR
[7] Popkov Y.S., Popkov A.Y., Dubnov Y.A., “Elements of randomized forecasting and its application to daily electrical load prediction in a regional power system”, Automation and Remote Control, 81 (2020), 1286–1306 | DOI | MR | Zbl
[8] Popkov Y. S., Popkov A. Y., Dubnov Y. A., Solomatine D., “Entropy-randomized forecasting of stochastic dynamic regression models”, Mathematics, 8:7 (2020), 1119 | DOI
[9] Kermack W.O., McKendrick A.G., “Contributions to the mathematical theory of epidemics”, Proceedings of Royal Society, 115A (1927), 700–721
[10] Van den Driessche P., Mathematical Epidemiology, eds. F. Brauer, P. van den Driessche, J. Wu, Springer, Berlin; Heidelberg, 2008, 147–157 pp. | MR | Zbl
[11] Bishop C., Pattern Recognition and Machine Learning (Information Science and Statistics), Springer, New York, 2007 | MR
[12] Friedman J., Hastie T., Tibshirani R., The Elements of Statistical Learning, Springer, Berlin, 2001 | MR | Zbl
[13] Flach P., Machine Learning. The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, Cambridge, 2012 | MR | Zbl
[14] Popkov A.Y., “Randomized machine learning of nonlinear models with application to forecasting the development of an epidemic process”, Automation and Remote Control, 82:6 (2021), 1049–1064 | DOI | MR | Zbl
[15] Guidotti E., Ardia D., “COVID-19 Data Hub”, Journal of Open Source Software, 5:51 (2020), 2376 | DOI
[16] https://www.covid19datahub.io
[17] Rubinstein R. Y., Kroese D. P., Simulation and the Monte Carlo Method, John Wiley Sons, 2007 | MR