Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2024_9_1_a1, author = {V. P. Golubyatnikov}, title = {On non-uniqueness of cycles in {3D} models of circular gene networks}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {23--34}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a1/} }
V. P. Golubyatnikov. On non-uniqueness of cycles in 3D models of circular gene networks. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a1/
[1] Hastings S., Tyson J., Webster D., “Existence of periodic solutions for negative feedback cellular control system”, Journal of Differential Equations, 25 (1977), 39–64 | DOI | MR
[2] Kolesov A.Yu., Rozov N.Kh., Sadovnichiy V.A., “Periodic solutions of traveling-wave type in circular gene networks”, Izvestiya: Mathematics, 80:3 (2016), 523–548 | DOI | DOI | MR | Zbl
[3] Glyzin S.D., Kolesov A.Yu., Rozov N.Kh., “Existence and stability of the relaxation cycle in a mathematical repressilator model”, Mathematical Notes, 101:1 (2017), 71–86 | DOI | DOI | MR | Zbl
[4] Ayupova N.B., Golubyatnikov V.P., Kazantsev M.V., “On the existence of a cycle in an asymmetric model of a molecular repressilator”, Numerical Analysis and Applications, 10:2 (2017), 101–107 | DOI | MR | Zbl
[5] Glass L., Pasternack J. S., “Stable oscillations in mathematical models of biological control systems”, Journal of Mathematical Biology, 6 (1978), 207–223 | DOI | MR | Zbl
[6] Banks H. T., Mahaffy J. M., “Stability of cyclic gene models for systems involving repression”, Journal of Theoretical Biology, 74 (1978), 323–334 | DOI | MR
[7] Gedeon T., Pernarowski M., Wilander A., “Cyclic feedback systems with quorum sensing coupling”, Bulletin of Mathematical Biology, 78:6 (2016), 1291–1317 | DOI | MR
[8] Golubyatnikov V. P., Minushkina L. S., “Combinatorics and geometry of circular gene networks models”, Letters to Vavilov Journal of Genetics and Breeding, 6:4 (2020), 188–192 | DOI
[9] Computational Systems Biology, eds. N.A. Kolchanov, S.S. Goncharov, V.A. Ivanisenko, V.A. Likhoshvai, Siberian Branch of RAS, Novosibirsk, 2008
[10] Golubyatnikov V. P., Minushkina L. S., “On uniqueness and stability of a cycle in one gene network”, Siberian Electronic Mathematical Reports, 18:1 (2021), 464–473 | MR
[11] Minushkina L.S., “Phase portraits of a block-linear dynamical system in a model of a circular gene network”, Mathematical Notes of NEFU, 28:2 (2021), 34–46
[12] Golubyatnikov V. P., Kirillova N. E., “On cycles in models of functioning of circular gene networks”, Journal of Mathematical Sciences, 246:6 (2020), 779–787 | DOI | MR
[13] Golubyatnikov V. P., Gradov V. S., “Non-uniqueness of cycles in piecewise-linear models of circular gene networks”, Siberian Advances in Mathematics, 31:1 (2021), 1–12 | DOI | MR
[14] Galimzyanov A.V., Stupak E.E., Tchuraev R.N., “Epigene networks: theory, models, experiment”, Advances of contemporary biology, 139:2 (2019), 107– 113 (In Russ.) | DOI
[15] Volokitin E.P., “On limit cycles in a simplest model of a hypothetical gene network”, Siberian journal of industrial mathematics, 7:3 (2004), 57–65 (In Russ.) | MR
[16] Gaidov Yu.A., “On the stability of periodic trajectories in some gene network models”, Journal of Applied and Industrial Mathematics, 4:1 (2010), 43–47 | DOI | MR | Zbl
[17] Golubyatnikov V.P., Ivanov V.V., Minushkina L.S., “On existence of a cycle in an asymmetric gene network model”, Siberian Journal of Pure and Applied Mathematics, 18:3 (2018), 27–35 (In Russ.) | MR | Zbl
[18] Ayupova N.B., Golubyatnikov V.P., “On a cycle in a 5-dimensional circular gene network model”, Journal of Applied and Industrial Mathematics, 15:3 (2021), 376–383 (In Russ.)
[19] Ayupova N.B., Golubyatnikov V.P., “On two classes of nonlinear dynamical systems: The four-dimensional case”, Sib. Mathematical Journal, 56:2 (2015), 231–236 (In Russ.) | MR | Zbl
[20] Kazantsev M.V., “On some properties of the domains graph of dynamical systems”, Siberian journal of industrial mathematics, 18:4 (2015), 42–48 (In Russ.) | MR | Zbl
[21] Ivanov V.V., “Attracting limit cycle of an odd-dimensional circular gene network model”, Journal of Applied and Industrial Mathematics, 16:3 (2022), 409–415 | DOI | MR
[22] Volokitin E.P., Treskov S.A., “The Andronov — Hopf bifurcation in a model of a hypothetical gene regulatory network”, Journal of Applied and Industrial Mathematics, 1:1 (2007), 127–136 | DOI | MR
[23] Akinshin A.A., “Andronov — Hopf bifurcation for some nonlinear equations with delay”, Siberian journal of industrial mathematics, 16:3 (2013), 3–15 (In Russ.) | MR | Zbl
[24] Likhoshvai V. A., Golubyatnikov V. P., Khlebodarova T. M., “Limit cycles in models of circular gene networks regulated by negative feedback loops”, BMC Bioinformatics, 21, 11:11 (2020), 255 | DOI
[25] Elowitz M. B., Leibler S., “A synthetic oscillatory network of transcriptional regulators”, Nature, 403 (2000), 335–338 | DOI
[26] Likhoshvai V. A., Kogai V. V., Fadeev S. I., Khlebodarova T.M., “On the chaos in gene networks”, Journal of Bioinformatics and Computational Biology, 11 (2013), 1340009 | DOI
[27] Pliss V.A., Nonlocal Problems in the Theory of Oscillations, Academic Press, New York, 1966 | MR
[28] Pétrovsky I.G., Théorie des équations différentielles ordinaires et des équations intégrales, Mir Publ., Moscou (In Russ.) | MR
[29] Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N. V., Leonov G. A., Prasad A., “Hidden attractors in dynamical systems”, Physics Reports, 637 (2016), 1–50 | DOI | MR | Zbl
[30] Chumakov G.A., Chumakova N.A., “Homoclinic cycles in one gene network model”, Mathematical Notes of NEFU, 21:14 (2014), 97–106 | Zbl