Linear and quasilinear equations with several Gerasimov~--- Caputo derivatives
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 5-22
Voir la notice de l'article provenant de la source Math-Net.Ru
A representation of a solution of the Cauchy problem for
a linear inhomogeneous equation solved with respect to the oldest derivative with several
fractional Gerasimov — Caputo derivatives and with a sectorial pencil of linear closed
operators at them in the case of the Hölder function in the right-hand side of the equation is obtained;
the uniqueness of the solution is proved. This result is used to reduce the Cauchy
problem for the corresponding quasilinear equation to an integro-differential equation.
The existence of a unique local solution is proved by the method of contraction operators
in the case of local Lipschitz nonlinear operator depending on several Gerasimov —
Caputo derivatives in the equation and a single global
solution under the Lipschitz condition for this operator.
Keywords:
Gerasimov — Caputo fractional derivative, multi-term fractional equation, sectorial pencil of operators, Hölder function.
@article{CHFMJ_2024_9_1_a0,
author = {K. V. Boyko},
title = {Linear and quasilinear equations with several {Gerasimov~---} {Caputo} derivatives},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {5--22},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/}
}
TY - JOUR AU - K. V. Boyko TI - Linear and quasilinear equations with several Gerasimov~--- Caputo derivatives JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2024 SP - 5 EP - 22 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/ LA - ru ID - CHFMJ_2024_9_1_a0 ER -
K. V. Boyko. Linear and quasilinear equations with several Gerasimov~--- Caputo derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/