Mots-clés : Hölder function.
@article{CHFMJ_2024_9_1_a0,
author = {K. V. Boyko},
title = {Linear and quasilinear equations with several {Gerasimov~{\textemdash}} {Caputo} derivatives},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {5--22},
year = {2024},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/}
}
K. V. Boyko. Linear and quasilinear equations with several Gerasimov — Caputo derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/
[1] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publ., Philadelphia, 1993 | MR | Zbl
[2] Pskhu A.V., Partial differential equations of fractional order, Nauka Publ., Moscow, 2005 (In Russ.)
[3] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Publishing, Amsterdam, 2006 | MR | Zbl
[4] Nakhushev A.M., Equations of mathematical biology, Vysshaya Shkola Publ., Moscow, 1995 (In Russ.)
[5] Uchaykin V.V., Method of fractional derivatives, Artishok, Ul'yanovsk, 2008 (In Russ.)
[6] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011 | MR
[7] Fedorov V.E., Boyko K.V., Phuong T.D., “Initial value problems for some classes of linear evolution equations with several fractional derivatives”, Mathematical Notes of NEFU, 28:3 (2021), 85–104 | MR
[8] Boyko K. V., Fedorov V. E., “The Cauchy problem for a class of multi-term equations with Gerasimov — Caputo derivatives”, Lobachevskii Journal of Mathematics, 43:6 (2022), 1057–1066 | DOI | MR
[9] Fedorov V. E., Boyko K. V., “Some classes of quasilinear equations with Gerasimov — Caputo derivatives”, Differential Equations, Mathematical Modeling and Computational Algorithms. DEMMCA 2021, Springer Proceedings in Mathematics Statistics, 423, 2023, 1–16 | DOI | MR
[10] Fedorov V.E., Boyko K.V., “Quasilinear equations with a sectorial set of operators at Gerasimov — Caputo derivatives”, Proceedings of the Steklov Institute of Mathematics, 321:1 (2023), 78–89 | MR
[11] Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015 | MR
[12] Fedorov V. E., Kostić M., “On a class of abstract degenerate multi-term fractional differential equations in locally convex spaces”, Eurasian Mathematical Journal, 9:3 (2018), 33–57 | DOI | MR | Zbl
[13] Kostić M., Abstract Degenerate Volterra Integro-Differential Equations, Mathematical Institute of SANU, Beograd, 2020 | MR | Zbl
[14] Li C.-G., Kostić M., “Abstract multi-term fractional differential equations”, Kragujevac Journal of Mathematics, 38:1 (2014), 51–71 | DOI | MR | Zbl
[15] Jiang H., Liu F., Turner I., Burrage K., “Analitical solutions for the multi-term time-space Caputo — Riesz fractional advection-diffussion equations on a finite domain”, Journal of Mathematical Analysis and Applications, 389:2 (2012), 1117–1127 | DOI | MR | Zbl
[16] Ahmad B., Alghamdi N., Alsaedi A., Ntouyas S. K., “Multi-term fractional differential equations with nonlocal boundary conditions”, Open Mathematics, 16:1 (2018), 0127 | DOI | MR
[17] Ma W., Sun L., “Simultaneous recovery of two time-dependent coefficients in a multi-term time-fractional diffusion equation”, Computational Methods in Applied Mathematics, 24:1 (2024), 59–83 | DOI | MR
[18] Fedorov V.E., Turov M.M., “The defect of a Cauchy type problem for linear equations with several Riemann — Liouville derivatives”, Siberian Mathematical Journal, 62:5 (2021), 1143–1162 | DOI | MR | Zbl
[19] Fedorov V. E., Du W.-S., Turov M. M., “On the unique solvability of incomplete Cauchy type problems for a class of multi-term equations with the Riemann — Liouville derivatives”, Symmetry, 14:1 (2022), 75 | DOI | MR
[20] Turov M.M., “Quasilinear multi-term equations with Riemann — Liouville derivatives of arbitrary orders”, Chelyabinsk Physical and Mathematical Journal, 7:4 (2022), 434–446 | DOI | MR | Zbl
[21] Bajlekova E.G., Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven University of Technology, Eindhoven, 2001 | MR | Zbl
[22] Kato K., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1966 | MR
[23] Plekhanova M. V., Baybulatova G. D., “Semilinear equations in Banach spaces with lower fractional derivatives”, Springer Proceedings in Mathematics and Statistics, 292 (2019), 81–93 | MR | Zbl