Linear and quasilinear equations with several Gerasimov~--- Caputo derivatives
Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 5-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

A representation of a solution of the Cauchy problem for a linear inhomogeneous equation solved with respect to the oldest derivative with several fractional Gerasimov — Caputo derivatives and with a sectorial pencil of linear closed operators at them in the case of the Hölder function in the right-hand side of the equation is obtained; the uniqueness of the solution is proved. This result is used to reduce the Cauchy problem for the corresponding quasilinear equation to an integro-differential equation. The existence of a unique local solution is proved by the method of contraction operators in the case of local Lipschitz nonlinear operator depending on several Gerasimov — Caputo derivatives in the equation and a single global solution under the Lipschitz condition for this operator.
Keywords: Gerasimov — Caputo fractional derivative, multi-term fractional equation, sectorial pencil of operators, Hölder function.
@article{CHFMJ_2024_9_1_a0,
     author = {K. V. Boyko},
     title = {Linear and quasilinear equations with several {Gerasimov~---} {Caputo} derivatives},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {5--22},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/}
}
TY  - JOUR
AU  - K. V. Boyko
TI  - Linear and quasilinear equations with several Gerasimov~--- Caputo derivatives
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2024
SP  - 5
EP  - 22
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/
LA  - ru
ID  - CHFMJ_2024_9_1_a0
ER  - 
%0 Journal Article
%A K. V. Boyko
%T Linear and quasilinear equations with several Gerasimov~--- Caputo derivatives
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2024
%P 5-22
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/
%G ru
%F CHFMJ_2024_9_1_a0
K. V. Boyko. Linear and quasilinear equations with several Gerasimov~--- Caputo derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 9 (2024) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/CHFMJ_2024_9_1_a0/

[1] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publ., Philadelphia, 1993 | MR | Zbl

[2] Pskhu A.V., Partial differential equations of fractional order, Nauka Publ., Moscow, 2005 (In Russ.)

[3] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Publishing, Amsterdam, 2006 | MR | Zbl

[4] Nakhushev A.M., Equations of mathematical biology, Vysshaya Shkola Publ., Moscow, 1995 (In Russ.)

[5] Uchaykin V.V., Method of fractional derivatives, Artishok, Ul'yanovsk, 2008 (In Russ.)

[6] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011 | MR

[7] Fedorov V.E., Boyko K.V., Phuong T.D., “Initial value problems for some classes of linear evolution equations with several fractional derivatives”, Mathematical Notes of NEFU, 28:3 (2021), 85–104 | MR

[8] Boyko K. V., Fedorov V. E., “The Cauchy problem for a class of multi-term equations with Gerasimov — Caputo derivatives”, Lobachevskii Journal of Mathematics, 43:6 (2022), 1057–1066 | DOI | MR

[9] Fedorov V. E., Boyko K. V., “Some classes of quasilinear equations with Gerasimov — Caputo derivatives”, Differential Equations, Mathematical Modeling and Computational Algorithms. DEMMCA 2021, Springer Proceedings in Mathematics Statistics, 423, 2023, 1–16 | DOI | MR

[10] Fedorov V.E., Boyko K.V., “Quasilinear equations with a sectorial set of operators at Gerasimov — Caputo derivatives”, Proceedings of the Steklov Institute of Mathematics, 321:1 (2023), 78–89 | MR

[11] Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015 | MR

[12] Fedorov V. E., Kostić M., “On a class of abstract degenerate multi-term fractional differential equations in locally convex spaces”, Eurasian Mathematical Journal, 9:3 (2018), 33–57 | DOI | MR | Zbl

[13] Kostić M., Abstract Degenerate Volterra Integro-Differential Equations, Mathematical Institute of SANU, Beograd, 2020 | MR | Zbl

[14] Li C.-G., Kostić M., “Abstract multi-term fractional differential equations”, Kragujevac Journal of Mathematics, 38:1 (2014), 51–71 | DOI | MR | Zbl

[15] Jiang H., Liu F., Turner I., Burrage K., “Analitical solutions for the multi-term time-space Caputo — Riesz fractional advection-diffussion equations on a finite domain”, Journal of Mathematical Analysis and Applications, 389:2 (2012), 1117–1127 | DOI | MR | Zbl

[16] Ahmad B., Alghamdi N., Alsaedi A., Ntouyas S. K., “Multi-term fractional differential equations with nonlocal boundary conditions”, Open Mathematics, 16:1 (2018), 0127 | DOI | MR

[17] Ma W., Sun L., “Simultaneous recovery of two time-dependent coefficients in a multi-term time-fractional diffusion equation”, Computational Methods in Applied Mathematics, 24:1 (2024), 59–83 | DOI | MR

[18] Fedorov V.E., Turov M.M., “The defect of a Cauchy type problem for linear equations with several Riemann — Liouville derivatives”, Siberian Mathematical Journal, 62:5 (2021), 1143–1162 | DOI | MR | Zbl

[19] Fedorov V. E., Du W.-S., Turov M. M., “On the unique solvability of incomplete Cauchy type problems for a class of multi-term equations with the Riemann — Liouville derivatives”, Symmetry, 14:1 (2022), 75 | DOI | MR

[20] Turov M.M., “Quasilinear multi-term equations with Riemann — Liouville derivatives of arbitrary orders”, Chelyabinsk Physical and Mathematical Journal, 7:4 (2022), 434–446 | DOI | MR | Zbl

[21] Bajlekova E.G., Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven University of Technology, Eindhoven, 2001 | MR | Zbl

[22] Kato K., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1966 | MR

[23] Plekhanova M. V., Baybulatova G. D., “Semilinear equations in Banach spaces with lower fractional derivatives”, Springer Proceedings in Mathematics and Statistics, 292 (2019), 81–93 | MR | Zbl