Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2023_8_4_a5, author = {N. P. Lazarev and D. Ya. Nikiforov and N. A. Romanova}, title = {Equilibrium problem for a {Timoshenko} plate contacting by the side and face surfaces}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {528--541}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a5/} }
TY - JOUR AU - N. P. Lazarev AU - D. Ya. Nikiforov AU - N. A. Romanova TI - Equilibrium problem for a Timoshenko plate contacting by the side and face surfaces JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2023 SP - 528 EP - 541 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a5/ LA - ru ID - CHFMJ_2023_8_4_a5 ER -
%0 Journal Article %A N. P. Lazarev %A D. Ya. Nikiforov %A N. A. Romanova %T Equilibrium problem for a Timoshenko plate contacting by the side and face surfaces %J Čelâbinskij fiziko-matematičeskij žurnal %D 2023 %P 528-541 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a5/ %G ru %F CHFMJ_2023_8_4_a5
N. P. Lazarev; D. Ya. Nikiforov; N. A. Romanova. Equilibrium problem for a Timoshenko plate contacting by the side and face surfaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 4, pp. 528-541. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a5/
[1] Signorini A., “Questioni di elasticita non linearizzata e semilinearizzata”, Rendiconti di Matematica e delle sue Applicazioni, 18:5 (1959), 95–139 (In Italian.) | MR | Zbl
[2] Fichera G., “Boundary Value Problems of Elasticity with Unilateral Constraints”, Handbook der Physik, Springer-Verlag, Band 6a/2. Berlin, Heidelberg, New York, 1972 | MR
[3] Dal Maso G., Paderni G., “Variational inequalities for the biharmonic operator with variable obstacles”, Annali di Matematica Pura ed Applicata, 153 (1988), 203–227 | DOI | MR | Zbl
[4] Khludnev A.M., Kovtunenko V.A., Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000
[5] Rademacher A., Rosin K., “Adaptive optimal control of Signorini's problem”, Computational Optimization and Applications, 70 (2018), 531–569 | DOI | MR | Zbl
[6] Lazarev N., Rudoy E., “Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies”, Journal of Computational and Applied Mathematics, 403 (2022), 113710 | DOI | MR | Zbl
[7] Khludnev A.M., Hoffmann K., Botkin N.D., “The variational contact problem for elastic objects of different dimensions”, Siberian Mathematical Journal, 47 (2006), 584–593 | DOI | MR | Zbl
[8] Rudoi E.M., Khludnev A.M., “Unilateral contact of a plate with a thin elastic obstacle”, Journal of Applied and Industrial Mathematics, 4:3 (2010), 389–398 | DOI | MR | MR | Zbl
[9] Furtsev A.I., “On contact between a thin obstacle and a plate containing a thin inclusion”, Journal of Mathematical Sciences, 237:4 (2019), 530–545 | DOI | MR | Zbl
[10] Furtsev A.I., “The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle”, Siberian Electronic Mathematical Reports, 17 (2020), 364–379 | MR | Zbl
[11] Pyatkina E. V., “A Contact of two elastic plates connected along a thin rigid inclusion”, Siberian Electronic Mathematical Reports, 17 (2020), 1797–1815 | MR | Zbl
[12] Stepanov V.D., Khludnev A.M., “The method of fictitious domains in the Signorini problem”, Siberian Mathematical Journal, 44:6 (2003), 1061–1074 | DOI | MR | MR | Zbl
[13] Lazarev N. P., Itou H., Neustroeva N. V., “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Japan Journal of Industrial and Applied Mathematics, 33:1 (2016), 63–80 | DOI | MR | Zbl
[14] Nikolaeva N.A., “Method of fictitious domains for Signorini's problem in Kirchhoff–Love theory of plates”, Journal of Mathematical Sciences, 221:6 (2017), 872–882 (In Russ.) | Zbl
[15] Lazarev N.P., Everstov V.V., Romanova N.A., “Fictitious domain method for equilibrium problems of the Kirchhoff-Love plates with nonpenetration conditions for known configurations of plate edges”, Journal of Siberian Federal University. Mathematics and Physics, 12:6 (2019), 674–686 | DOI | MR
[16] Knees D., Schroder A., “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Mathematical Methods in the Applied Sciences, 35 (2012), 1859–1884 | DOI | MR | Zbl
[17] Rudoy E. M., Shcherbakov V. V., “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sib. elektron. mat. izv., 13 (2016), 395–410 | MR | Zbl
[18] Itou H., Kovtunenko V. A., Rajagopal K. R., “Nonlinear elasticity with limiting small strain for cracks subject to non-penetration”, Mathematics and Mechanics of Solids, 22:6 (2017), 1334–1346 | DOI | MR | Zbl
[19] Itou H., Kovtunenko V. A., Rajagopal K. R., “Well-posedness of the problem of non-penetrating cracks in elastic bodies whose material moduli depend on the mean normal stress”, International Journal of Engineering Science, 136 (2019), 17–25 | DOI | MR | Zbl
[20] Furtsev A., Itou H., Rudoy E., “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, International Journal of Solids and Structures, 182–183 (2020), 100–111 | DOI
[21] Lazarev N.P., Semenova G.M., “Equilibrium problem for a Timoshenko plate with a geometrically nonlinear condition of nonpenetration for a vertical crack”, Journal of Applied and Industrial Mathematics, 14:3 (2020), 532–540 | DOI | MR | Zbl
[22] Khludnev A., “T-shape inclusion in elastic body with a damage parameter”, Journal of Computational and Applied Mathematics, 393 (2021), 113540 | DOI | MR | Zbl
[23] Khludnev A., Fankina I., “Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary”, Zeitschrift für Angewandte Mathematik und Physik, 72:3 (2021), 121 | DOI | MR | Zbl
[24] Kovtunenko V. A., “Poroelastic medium with non-penetrating crack driven by hydraulic fracture: Variational inequality and its semidiscretization”, Journal of Computational and Applied Mathematics, 405 (2022), 113953 | DOI | MR | Zbl
[25] Kovtunenko V. A., Itou H., Khludnev A. M., et al., “Non-smooth variational problems and applications”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380 (2022), 20210364 | DOI | MR
[26] Lazarev N.P., Fedotov E.D., “Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions”, Chelyabinsk Physical and Mathematical Journal, 7:4 (2022), 412–423 | DOI | MR | Zbl
[27] Lazarev N. P., Kovtunenko V. A., “Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions”, Mathematics, 10:2 (2022), 250 | DOI | MR
[28] Lazarev N.P., “Equilibrium problem for a Timoshenko plate contacting with an inclined obstacle”, Mathematical Notes of NEFU, 21:3 (2014), 68–75 | MR | Zbl | Zbl
[29] Lazarev N.P., “Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle”, Journal of Mathematical Sciences, 203:4 (2014), 527–539 (In Russ.) | Zbl
[30] Pelekh B.L., Theory of shells with finite shear modulus, Naukova Dumka, Kiev, 1973 (In Russ.)
[31] Lazarev N.P., “An equilibrium problem for a Timoshenko plate with a through crack”, Journal of Applied and Industrial Mathematics, 14:4 (2011), 32–43 | MR | Zbl
[32] Baiocchi C., Capello A., Variational and Quasivariational Inequalities: Application to Free Boundary Problems, Wiley, New York, 1984 | MR