Mechanochemical synthesis of ion-exchange silver forms of polyantimonic acid
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 4, pp. 605-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

The possibility of synthesising ion-substituted forms of hydrated silver antimonates $\mathrm{Ag_{2\gamma} H_{2-2\gamma} Sb _{2} O_{6} \cdot 2H_{2}O}$ has been studied. For the synthesis, the method of mechanochemical activation of the components of an inorganic mixture consisting of polyantimonic acid (PAA) with $\mathrm{H_{2} Sb _{2} O _{6} \cdot 2H _{2} O}$ composition and silver nitrate with the concentration range $(\gamma)$ from $0.0$ to $1.0$ has been applied. The results of studies of the phase composition of the synthesized compounds and their structural features are presented. Using the Rietveld method, the parameters of the crystal lattice of PAA hydrated ion-substituted silver forms with a pyrochlore-type structure have been refined. The model for the occupation of metal ions by crystallographic positions has been proposed: the framework of the structure of the compounds is formed by $16c$- and $48f$-positions, in which $\mathrm{Sb}^{5+}$ and $\mathrm{O}^{2-}$ are statistically located; hydrated oxonium ions ($\mathrm{H_{3}O}^+$) and silver ions occupy $16d$- and $8b$-positions respectively. It has been shown that the synthesis of silver forms of PAA is preferably carried out by the mechanochemical synthesis, which results in the complete substitution of proton groups by silver ions in the structure of the compounds.
Keywords: polyantimonic acid, mechanochemical synthesis, hydrated ion-substituted forms, pyrochlore-type structure, ion-exchange properties.
@article{CHFMJ_2023_8_4_a11,
     author = {F. A. Yaroshenko and V. A. Burmistrov and A. E. Silova and Yu. A. Lupitskaya and E. M. Filonenko and P. V. Timushkov and M. N. Ulyanov and S. I. Saunina},
     title = {Mechanochemical synthesis of ion-exchange silver forms of polyantimonic acid},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {605--616},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a11/}
}
TY  - JOUR
AU  - F. A. Yaroshenko
AU  - V. A. Burmistrov
AU  - A. E. Silova
AU  - Yu. A. Lupitskaya
AU  - E. M. Filonenko
AU  - P. V. Timushkov
AU  - M. N. Ulyanov
AU  - S. I. Saunina
TI  - Mechanochemical synthesis of ion-exchange silver forms of polyantimonic acid
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 605
EP  - 616
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a11/
LA  - en
ID  - CHFMJ_2023_8_4_a11
ER  - 
%0 Journal Article
%A F. A. Yaroshenko
%A V. A. Burmistrov
%A A. E. Silova
%A Yu. A. Lupitskaya
%A E. M. Filonenko
%A P. V. Timushkov
%A M. N. Ulyanov
%A S. I. Saunina
%T Mechanochemical synthesis of ion-exchange silver forms of polyantimonic acid
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 605-616
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a11/
%G en
%F CHFMJ_2023_8_4_a11
F. A. Yaroshenko; V. A. Burmistrov; A. E. Silova; Yu. A. Lupitskaya; E. M. Filonenko; P. V. Timushkov; M. N. Ulyanov; S. I. Saunina. Mechanochemical synthesis of ion-exchange silver forms of polyantimonic acid. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 4, pp. 605-616. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a11/

[1] Stenina I.A., Yaroslavtsev A.B., “Low- and intermediate-temperature proton-conducting electrolytes”, Inorganic Materials, 53 (2017), 253–262 | DOI

[2] Safronova E.Y., Osipov A.K., Baranchikov A.E., et al., “Proton conductivity of M${}_x$H${}_{3-x}$PX${}_{12}$O${}_{40}$ and M${}_x$H${}_{4-x}$SiX${}_{12}$O${}_{40}$ (M=Rb,Cs; X=W,Mo) acid salts of heteropolyacids”, Inorganic Materials, 51 (2015), 1157–1162 | DOI

[3] Belinskaya F.A., Militsina E.A., “Inorganic ion-exchange materials based on insoluble antimony(V) Compounds”, Russian Chemical Reviews, 49 (1980), 933–952 | DOI

[4] Balykin V.P., Burmistrov V.A., Mezhenina O.A., “Structure and ion exchange properties of crystalline polyantimonic acid”, Bulletin of the South Ural State University. Ser. Chemistry, 13:8 (2012), 43–48 (In Russ.)

[5] Kovalenko L.Y., Burmistrov V.A., Zakharevich D.A., “The composition and structure of phases, formed in the thermolysis of substitutional solid solutions H${}_{2}$Sb${}_{2-x}$V${}_{x}$O${}_{6}$$\cdot$nH$ _{2}$O”, Condensed Matter and Interphases, 22:1 (2020), 75–83

[6] Lupitskaya Yu.A., Filonenko E.M., Yaroshenko F.A., Firsova O.A., “Structure and ion exchange properties of crystalline tungstoantimony acid and its substituted forms”, Chelyabinsk Physical and Mathematical Journal, 6:4 (2021), 485–496

[7] Kovalenko L.Y., Burmistrov V.A., Biryukova A.A., “Kinetics of H${}^+$/Me${}^+$ (Me=Na,K) ion exchange in polyantimonic acid”, Russian Journal of Electrochemistry, 52 (2016), 694–698 | DOI

[8] Sharov M.K., “Search method of optimal parameters of the pseudo-Voigt function for the approximation of X-ray reflexes profiles”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2014, no. 2, 54–59 (In Russ.)

[9] Momma K., Izumi F., “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”, Journal of Applied Crystallography, 48:6 (2011), 1272–1276 | DOI

[10] Lupitskaya Y.A., Burmistrov V.A., “Ionic conductivity of potassium antimonate tungstates with partial Na${}^+$ or Li${}^+$ substitution for K${}^+$”, Inorganic Materials, 49:6 (2013), 930–934 | DOI

[11] Ivanov-Shits A.K., Demyanets L.N., “Growing single crystals of superionic conductors”, Crystallography, 40:6 (1995), 1077–1112 (In Russ.)