Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2023_8_4_a10, author = {A. E. Mayer and P. N. Mayer}, title = {Detection of void nucleation, coalescense and collapse in atomistic simulations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {594--604}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a10/} }
TY - JOUR AU - A. E. Mayer AU - P. N. Mayer TI - Detection of void nucleation, coalescense and collapse in atomistic simulations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2023 SP - 594 EP - 604 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a10/ LA - en ID - CHFMJ_2023_8_4_a10 ER -
A. E. Mayer; P. N. Mayer. Detection of void nucleation, coalescense and collapse in atomistic simulations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 4, pp. 594-604. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_4_a10/
[1] Kuksin A.Yu., Norman G.E., Pisarev V.V., Stegailov V.V., Yanilkin A.V., “Theory and molecular dynamics modeling of spall fracture in liquids”, Physical Review B, 82:17 (2010), 174101 | DOI
[2] Kuksin A., Norman G., Stegailov V., Yanilkin A., Zhilyaev P., “Dynamic fracture kinetics, influence of temperature and microstructure in the atomistic model of aluminum”, International Journal of Fracture, 161:1–2 (2010), 127–136 | DOI
[3] Nemat-Nasser S., Chang S.-N., “Compression-induced high strain rate void collapse, tensile cracking, and recrystallization in ductile single and polycrystals”, Mechanics of Materials, 10:1–2 (1990), 1–17 | DOI
[4] Liao Y., Xiang M., Li G., Wang K., Zhang X., Chen J., “Molecular dynamics studies on energy dissipation and void collapse in graded nanoporous nickel under shock compression”, Mechanics of Materials, 126 (2018), 13–25 | DOI
[5] Wen P., Demaske B., Phillpot S. R., Spearot D. E., Tao G., Yuan S., “Void collapse and subsequent spallation in Cu$_{50}$Zr$_{50}$ metallic glass under shock loading by molecular dynamics simulations”, Journal of Applied Physics, 125:21 (2019), 215903 | DOI
[6] Wu W.-D., Shao J.-L., “Atomistic study on the dynamic response of the void or helium bubble in aluminum under compression and tension”, Journal of Applied Physics, 127:15 (2020), 154902 | DOI
[7] Latypov F.T., Mayer A.E., Krasnikov V.S., “Dynamics of growth and collapse of nanopores in copper”, International Journal of Solids and Structures, 202 (2020), 418–433 | DOI
[8] Latypov F.T., Fomin E.V., Krasnikov V.S., Mayer A.E., “Dynamic compaction of aluminum with nanopores of varied shape: MD simulations and machine-learning-based approximation of deformation behavior”, International Journal of Plasticity, 156 (2022), 103363 | DOI
[9] Nielsen K.L., Dahl J., Tvergaard V., “Collapse and coalescence of spherical voids subject to intense shearing: Studied in full 3D”, International Journal of Fracture, 177:2 (2012), 97–108 | DOI
[10] Longere P., Bhogaraju S., Craciun D., “Void collapse/growth in solid materials under overall shear loading”, Mechanics Research Communications, 69 (2015), 1–7 | DOI
[11] Liu Z.G., Wong W. H., Guo T.F, “Void behaviors from low to high triaxialities: Transition from void collapse to void coalescence”, International Journal of Plasticity, 84 (2016), 183–202 | DOI
[12] Danas K., Ponte Castaneda P., “Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials”, International Journal of Solids and Structures, 49 (2012), 1325–1342 | DOI
[13] Seppala E.T., Belak J., Rudd R.E., “Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals”, Physical Review B, 71:6 (2005), 064112 | DOI
[14] Belay O.V., Kiselev S.P., “Molecular dynamics simulation of deformation and fracture of a “copper-molybdenum” nanocomposite plate under uniaxial tension”, Physical Mesomechanics, 14:3–4 (2011), 145–153 | DOI
[15] Pogorelko V.V., Mayer A.E., “Influence of copper inclusions on the strength of aluminum matrix at high-rate tension”, Materials Science and Engineering: A, 642 (2015), 351–359 | DOI
[16] Rawat S., Chaturvedi S., “Effect of temperature on the evolution dynamics of voids in dynamic fracture of single crystal iron: a molecular dynamics study”, Philosophical Magazine, 101:6 (2021), 657–672 | DOI
[17] Zhao R., Wang Y., Gong X., “Fracture behaviors of double network elastomers with dynamic non-covalent linkages: A molecular dynamics study”, Polymer, 244 (2022), 124670 | DOI
[18] Mayer P.N., Mayer A.E., “Late stages of high rate tension of aluminum melt: Molecular dynamic simulation”, Journal of Applied Physics, 120:7 (2016), 075901 | DOI
[19] Mayer P.N., Mayer A.E., “Evolution of foamed aluminum melt at high rate tension: A mechanical model based on atomistic simulations”, Journal of Applied Physics, 124:3 (2018), 035901 | DOI
[20] Mayer P.N., Mayer A.E., “Size distribution of pores in metal melts at non-equilibrium cavitation and further stretching, and similarity with the spall fracture of solids”, International Journal of Heat and Mass Transfer, 127 (2018), 643–657 | DOI
[21] Deng X., Zhu W., Zhang Y., He H., Jing F., “Configuration effect on coalescence of voids in single-crystal copper under shock loading”, Computational Materials Science, 50:1 (2010), 234–238 | DOI
[22] Peng X., Zhu W., Chen K., Deng X., Wei Y., “Molecular dynamics simulations of void coalescence in monocrystalline copper under loading and unloading”, Journal of Applied Physics, 119:16 (2016), 165901 | DOI
[23] Rawat S., Chaturvedi S., “Evolution dynamics of voids in single crystal copper under triaxial loading condition”, Philosophical Magazine, 101:9 (2021), 1119–1143 | DOI
[24] Tu R., Wei N., Pei Y., Liu Y., Zhang F., Zhang D., “The effect of compression on the void coalescence under strong dynamic loading”, Advances in Materials Science and Engineering, 2022 (2022), 9990161
[25] Yang X., Zhao H., Gao X., Chen Z., Zeng X., Wang F., “Molecular dynamics study on spallation fracture in single crystal and nanocrystalline tin”, Journal of Applied Physics, 132:7 (2022), 075903 | DOI
[26] Mayer A.E., Mayer P.N., “Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations”, Chelyabinsk Physical and Mathematical Journal, 3:3 (2018), 344–352
[27] Mayer A.E., Mayer P.N., “Evolution of pore ensemble in solid and molten aluminum under dynamic tensile fracture: Molecular dynamics simulations and mechanical models”, International Journal of Mechanical Sciences, 157–158 (2019), 816–832 | DOI | MR
[28] Mayer A.E., Mayer P.N., “Strain rate dependence of spall strength for solid and molten lead and tin”, International Journal of Fracture, 222:1–2 (2020), 171–195 | DOI
[29] Mayer P.N., Pogorelko V.V., Voronin D.S., Mayer A.E., “Spall fracture of solid and molten copper: molecular dynamics, mechanical model and strain rate dependence”, Metals, 12:11 (2022), 1878 | DOI
[30] Mayer A.E., Ebel A.A., Al-Sandoqachi M.K.A., “Plastic deformation at dynamic compaction of aluminum nanopowder: Molecular dynamics simulations and mechanical model”, International Journal of Plasticity, 124 (2020), 22–41 | DOI
[31] Mayer A.E., “Micromechanical model of nanoparticle compaction and shock waves in metal powders”, International Journal of Plasticity, 147 (2021), 103102 | DOI
[32] Stukowski A., “Computational analysis methods in atomistic modeling of crystals”, JOM, 66 (2014), 399–407 | DOI | MR
[33] Cai Y., Wu H.A., Luo S.N., “Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids”, Journal of Chemical Physics, 140:21 (2014), 214317 | DOI
[34] Stukowski A., “Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18:1 (2010), 015012 | DOI
[35] Plimpton S., “Fast parallel algorithms for short–range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI | Zbl
[36] Apostol F., Mishin Y., “Interatomic potential for the Al–Cu system”, Physical Review B, 83 (2011), 054116 | DOI
[37] Daw M.S., Baskes M.I., “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B, 29 (1984), 6443 | DOI
[38] Hoover W.G., “Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, 31:3 (1985), 1695–1697 | DOI
[39] Zope R.R., Mishin Y., “Interatomic potentials for atomistic simulations of the Ti-Al system”, Physical Review B, 68:2 (2003), 024102 | DOI | MR