Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2023_8_3_a6, author = {E. S. Rodionov and A. E. Mayer}, title = {Estimation of dynamic yield stress by {Taylor} test with reduced cylindrical head part of samples}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {399--409}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a6/} }
TY - JOUR AU - E. S. Rodionov AU - A. E. Mayer TI - Estimation of dynamic yield stress by Taylor test with reduced cylindrical head part of samples JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2023 SP - 399 EP - 409 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a6/ LA - en ID - CHFMJ_2023_8_3_a6 ER -
%0 Journal Article %A E. S. Rodionov %A A. E. Mayer %T Estimation of dynamic yield stress by Taylor test with reduced cylindrical head part of samples %J Čelâbinskij fiziko-matematičeskij žurnal %D 2023 %P 399-409 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a6/ %G en %F CHFMJ_2023_8_3_a6
E. S. Rodionov; A. E. Mayer. Estimation of dynamic yield stress by Taylor test with reduced cylindrical head part of samples. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 399-409. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a6/
[1] Taylor G.I., “The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations”, Proceedings of the Royal Society of London. Ser. A, 194:1038 (1948), 289–299
[2] Whiffin A.C., “The use of flat-ended projectiles for determining dynamic yield stress. II. Tests on various metallic materials”, Proceedings of the Royal Society of London. Ser. A, 194:1038 (1948), 300–322
[3] Carrington W.E., Gayler M.L.V., “The use of flat-ended projectiles for determining dynamic yield stress III. Changes in microstructure caused by deformation under impact at high-striking velocities”, Proceedings of the Royal Society of London. Ser. A, 194:1038 (1948), 323–331
[4] Pakhnutova N.V., Boyangin E.N., Shkoda O.A., Zelepugin S.A., “Microhardness and dynamic yield strength of copper samples upon impact on a rigid wall”, Advanced Engineering Research, 22:3 (2022), 224–231 | DOI
[5] Piao M.J., Huh H., Lee I., Park L., “Characterization of hardening behaviors of 4130 Steel, OFHC Copper, Ti6Al4V alloy considering ultra-high strain rates and high temperatures”, International Journal of Mechanical Sciences, 131–132 (2017), 1117–1129 | DOI
[6] Rivera D., Bernstein J., Schmidt K., Muyskens A., Nelms M., Barton N., Kupresanin A., Florando J., “Bayesian calibration of strength model parameters from Taylor impact data”, Computational Materials Science, 210 (2022), 110999 | DOI
[7] Rodionov E.S., Lupanov V.G., Gracheva N.A., Mayer P.N., Mayer A.E., “Taylor impact tests with copper cylinders: Experiments, microstructural analysis and 3D SPH modeling with dislocation plasticity and MD-informed artificial neural network as equation of state”, Metals, 12 (2022), 264 | DOI
[8] Gingold R.A., Monaghan J.J., “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, Monthly Notices of the Royal Astronomical Society, 181:3 (1977), 375–389 | DOI | MR | Zbl
[9] Mayer A.E., Khishchenko K.V., Levashov P.R., Mayer P.N., “Modeling of plasticity and fracture of metals at shock loading”, Journal of Applied Physics, 113:19 (2013), 93508 | DOI
[10] Mośko W., Janiszewski J., Radziejewska J., Grazka M., “Analysis of deformation history and damage initiation for 6082-T6 aluminium alloy loaded at classic and symmetric Taylor impact test conditions”, International Journal of Impact Engineering, 75 (2015), 203–213 | DOI
[11] Rodionov E.S., Pogorelko V.V., Lupanov V.G., Mayer P.N., Mayer A.E., “Modified Taylor impact tests with profiled copper cylinders: Experiment and optimization of dislocation plasticity model”, Materials, 16 (2023), 5602 | DOI
[12] Kanel G.I., Savinykh A.S., Garkushin G.V., Razorenov S.V., “Effects of temperature and strain on the resistance to high-rate deformation of copper in shock waves”, Journal of Applied Physics, 128:11 (2020), 115901 | DOI
[13] Follansbee P., Regazzoni G., Kocks U., “The transition to drag-controlled deformation in copper at high strain rates”, Institute of Physics Conference Series, 70 (1984), 71–80
[14] Lea L.J., Jardine A.P., “Characterisation of high rate plasticity in the uniaxial deformation of high purity copper at elevated temperatures”, International Journal of Plasticity, 102 (2018), 41–52 | DOI