Propagation of hybrid detonation in a hydrogen-oxygen mixture with aluminum particles in a channel with expansion
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 371-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

A physical and mathematical model of hybrid detonation of a mixture of hydrogen — oxygen — argon — aluminum particles is presented. Using this model, the influence of aluminum particles on the process of detonation propagation in a channel with expansion was studied. To speed up the results, the numerical model was extended using the Open MP libraries. As a result, it was found that the mode of propagation of hybrid detonation is affected by both the loading and the size of the particles. In general, the hybrid mixture is more resistant to changes in the geometry of the area to be filled.
Keywords: physical and mathematical modeling, numerical simulation, hybrid detonation, channel with expansion, aluminum particles.
@article{CHFMJ_2023_8_3_a4,
     author = {T. A. Khmel and S. A. Lavruk and A. A. Afanasenkov},
     title = {Propagation of hybrid detonation in a hydrogen-oxygen mixture with aluminum particles in a channel with expansion},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {371--386},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a4/}
}
TY  - JOUR
AU  - T. A. Khmel
AU  - S. A. Lavruk
AU  - A. A. Afanasenkov
TI  - Propagation of hybrid detonation in a hydrogen-oxygen mixture with aluminum particles in a channel with expansion
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 371
EP  - 386
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a4/
LA  - ru
ID  - CHFMJ_2023_8_3_a4
ER  - 
%0 Journal Article
%A T. A. Khmel
%A S. A. Lavruk
%A A. A. Afanasenkov
%T Propagation of hybrid detonation in a hydrogen-oxygen mixture with aluminum particles in a channel with expansion
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 371-386
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a4/
%G ru
%F CHFMJ_2023_8_3_a4
T. A. Khmel; S. A. Lavruk; A. A. Afanasenkov. Propagation of hybrid detonation in a hydrogen-oxygen mixture with aluminum particles in a channel with expansion. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 371-386. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a4/

[1] Veyssiere B., Khasainov B. A., “A model for steady, plane, double-front detonations (DFD) in gaseous explosive mixtures with aluminum particles in suspension”, Combustion and Flame, 85:1–2 (1991), 241–253 | DOI

[2] Veyssiere B., Khasainov B. A., “Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures”, Shock Waves, 4:4 (1995), 171–186 | DOI

[3] Khasainov B. A., Veyssiere B., “Initiation of detonation regimes in hybrid two-phase mixtures”, Shock Waves, 6:1 (1996), 9–15 | DOI

[4] Veyssiere B., Ingignoli W., “Existence of the detonation cellular structure in two-phase hybrid mixtures”, Shock Waves, 12:4 (2003), 291–299 | DOI

[5] Velasco F.J.S., Otón-Martinéz R.A., García-Cascarez J.R., Tolosa S.E., Meynet N., Bentaib A., “Modelling detonation of H${}_{2}$-O${}_{2}$-N${}_{2}$ mixtures in presence of solid particles in 3D scenarios”, International Journal of Hydrogen Energy, 41:38 (2016), 17154–1716 | DOI

[6] Khasainov B. A., Veyssiere B., Ingignoli W., “Numerical simulation of detonation cell structure in hydrogen-air mixture loaded by aluminum particles”, Hugh-Speed Deflagration and Detonation: Fundamentals and Control, eds. G.D.Roy, et al, ELEX-KM Publishers, Moscow, 2001, 163–174

[7] Carvel R. O., Thomas G. O., Brown C. J., “Some observations of detonation propagation through a gas”, Shock Waves, 13:2 (2003), 83–89 | DOI

[8] Khmel T.A., Lavruk S.A., “Development of a model of hybrid detonation in a mixture of oxygen-hydrogen-argon with aluminum particles”, Combustion and Explosion, 16:1 (2023), 63–69 | MR

[9] Vasilev A. A., Trotsyuk A. V., Fomin P. A., Vasiliev V. A., Rychkov V. N., Desbordes D., “The basic results on reinitiation processes in diffracting multifront detonations. Part I”, Eurasian ChemTech Journal, 5:4 (2003), 279–289 | DOI

[10] Khasainov B., Presles H.-N., Desborde D., Demontis P., Vidal P., “Detonation diffraction from circular tubes to cones”, Shock Waves, 14:3 (2005), 187–192 | DOI

[11] Fedorov A.V., Khmel T.A., Lavruk S.A., “Exit of a heterogeneous detonation wave into a channel with linear expansion. I. Propagation regimes”, Combustion, Explosion and Shock Waves, 53:5 (2017), 585–595 | DOI | MR

[12] Fedorov A.V., Khmel T.A., Lavruk S.A., “Exit of a heterogeneous detonation wave into a channel with linear expansion. II. Critical propagation condition”, Combustion, Explosion and Shock Waves, 54:1 (2018), 72–81 | DOI | MR

[13] Lavruk S., Khmel T., “Regimes and critical conditions of detonation propagation in expanding channels in gas suspensions of ultrafine aluminum particles”, Journal of Loss Prevention in the Process Industries, 71 (2021), 104476 | DOI

[14] Bedarev I.A., Rylova K.V., Fedorov A.V., “Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen-air mixtures”, Combustion, Explosion and Shock Waves, 51:5 (2015), 528–539 | DOI

[15] Bedarev I., Temerbekov V., “Estimation of the energy of detonation initiation in a hydrogen-oxygen mixture by a high velocity projectile”, Thermal Science, 25:5 B (2021), 3889–3897 | DOI

[16] Khmel T.A., Fedorov A.V., “Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen”, Combustion, Explosion and Shock Waves, 41:4 (2005), 435–448 | DOI

[17] Khmel T.A., Fedorov A.V., “Modeling of plane detonation waves in a gas suspension of aluminum nanoparticles”, Combustion, Explosion and Shock Waves, 54:2 (2018), 189–199 | DOI

[18] Sundaram D.S., Yang V., Zarko V.E., “Combustion of nano aluminum particles (Review)”, Combustion, Explosion and Shock Waves, 51:2 (2015), 173–196 | DOI

[19] Starik A.M., Savel'ev A.M., Titova N.S., “Specific features of ignition and combustion of composite fuels containing aluminum nanoparticles (Review)”, Combustion, Explosion, and Shock Waves, 51:2 (2015), 197–222 | DOI

[20] Vasil’ev V.M., Vol’pert A.I., Klychnikov L.V., Petrov Yu.M., Salakatova L.S., Stesik L.N., “Calculation of fuel-air mixture detonation parameters”, Combustion, Explosion and Shock Waves, 16, 354–360 | DOI

[21] Khmel T.A., Lavruk S.A., “Modeling of cellular detonation in gas suspensions of submicron aluminum particles with different distributions of concentration”, Combustion, Explosion and Shock Waves, 58:3 (2022), 253–268 | DOI | DOI

[22] Veyssiere B., Khasainov B. A., Briand A., “Investigation of detonation initiation in aluminum suspensions”, Shock Waves, 18:4 (2008), 307–315 | DOI | Zbl

[23] Khmel T.A., “Modeling of dynamic processes in dilute and dense gas suspensions (Review)”, Combustion, Explosion and Shock Waves, 57:3 (2021), 257–269 | DOI | DOI

[24] Lavruk S.A., “Modeling of heterogeneous detonation propagation in monodisperse and bidisperse aluminum mixture under the oblique”, Chelyabinsk Physical and Mathematical Journal, 3:1 (2018), 111–123 | MR | Zbl

[25] Khmel T.A., Fedorov A.V., “Numerical technologies for studying heterogeneous detonation of gas suspensions”, Mathematical Models and Computer Simulations, 18:8 (2006), 49–63