Unique solvability of IBVP for pseudo-subdiffusion equation with Hilfer fractional derivative on a metric graph
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 351-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use $\delta$-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.
Keywords: Hilfer operator, metric graph, method of variables separation, Mittag-Leffler function, a priori estimation, fractional derivatives and integrals.
@article{CHFMJ_2023_8_3_a3,
     author = {Z. A. Sobirov and J. R. Khujakulov and A. A. Turemuratova},
     title = {Unique solvability of {IBVP} for pseudo-subdiffusion equation with {Hilfer} fractional derivative on a metric graph},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {351--370},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a3/}
}
TY  - JOUR
AU  - Z. A. Sobirov
AU  - J. R. Khujakulov
AU  - A. A. Turemuratova
TI  - Unique solvability of IBVP for pseudo-subdiffusion equation with Hilfer fractional derivative on a metric graph
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 351
EP  - 370
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a3/
LA  - en
ID  - CHFMJ_2023_8_3_a3
ER  - 
%0 Journal Article
%A Z. A. Sobirov
%A J. R. Khujakulov
%A A. A. Turemuratova
%T Unique solvability of IBVP for pseudo-subdiffusion equation with Hilfer fractional derivative on a metric graph
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 351-370
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a3/
%G en
%F CHFMJ_2023_8_3_a3
Z. A. Sobirov; J. R. Khujakulov; A. A. Turemuratova. Unique solvability of IBVP for pseudo-subdiffusion equation with Hilfer fractional derivative on a metric graph. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 3, pp. 351-370. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_3_a3/

[1] Pskhu A.V., Partial differential equations of fractional order, Nauka Publ., Moscow, 2005 (In Russ.) | MR | Zbl

[2] Kilbas A.A., Srivstava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier Science. B.V., Amsterdam, 2006 | MR | Zbl

[3] Nakhushev A.M., Fractional calculus and its applications, Fizmatlit Publ., Moscow, 2003 (In Russ.) | Zbl

[4] Mainardi F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models., World Scientific Publ., Singapore, 2010 | MR | Zbl

[5] Tarasov V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Education Press; Berlin/Heidelberg, Springer, Beijing, 2010 | MR

[6] Korbel J., Luchko Y., “Modeling of financial processes with a space-time fractional diffusion equation of varying order”, Fractional Calculus and Applied Analysis, 19 (2016), 1414–1433 | DOI | MR | Zbl

[7] Hilfer R., Application of Fractional Calculus in Physics, World Scientific Publ., Singapore, 2000 | MR

[8] Hilfer R., “Experimental evidence for fractional time evolution in glass forming materials”, Chemical Physics, 284 (2002), 399–408 | DOI | MR

[9] Hilfer R., Luchko Y., Tomovski Z., “Operational method for solution of the fractional differential equations with the generalized Riemann — Liouville fractional derivatives”, Fractional Calculus and Applied Analysis, 2009, no. 12, 299–318 | MR | Zbl

[10] Yuldashev T.K., Kadirkulov B.J., “Boundary value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator”, Axioms, 9:2 (2020), 68 | DOI

[11] Yuldashev T.K., Kadirkulov B.J., “Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator”, Ural Mathematics Journal, 6:1 (2020), 153–167 | DOI | MR | Zbl

[12] Pokorniy Yu.V., Penkin O.M., Pryadiyev V.L., Borovskikh A.V., Lazarev K.P., Shabrov S.A., Differensial equations on geometric graphs, Fizmatlit Publ., Moscow, 2005 (In Russ.) | MR

[13] Svetkova A.V., Shafarevich A.I., “The Cauchy problem for the wave equation on homogeneous trees”, Mathematical Notes, 100:6 (2016), 862–869 | DOI | MR

[14] Kottos T., Smilansky U., “Periodic orbit theory and spectral statistics for quantum graphs”, Annals of Physics, 274:1 (1999), 76–124 | DOI | MR | Zbl

[15] Gnutzmann S., Smilansky U., “Quantum graphs: Applications to quantum chaos and universal spectral statistics”, Advances in Physics, 55:5–6 (2006), 527–625 | DOI

[16] Seifert Ch., “The linearized Korteweg — de Vries equation on general metric graphs”, The Diversity and Beauty of Applied Operator Theory, Birkhäuser, Cham, 2018, 449–458 | DOI | MR

[17] Mophou G., Leugering G., Fotsing P.S., “Optimal control of a fractional Sturm — Liouville problem on a star graph”, Optimization: a Journal of Mathematical Programming and Operations Research, 70:3 (2021), 659–687 | MR | Zbl

[18] Fotsing P.S., “Optimal control of a fractional diffusion Sturm — Liouville problem on a star graph”, Advances in Pure and Applied Mathematics, 13:1 (2022), 1–38 | DOI | MR

[19] Mehandiratta V., Mehra M., Leugering G., “Optimal control problems driven by time-fractional diffusion equations on metric graphs. Optimality system and finite difference approximation”, SIAM Journal on Control and Optimization, 59:6 (2021), 4216–4242 | DOI | MR | Zbl

[20] Abdullaev O.Kh., Khujakulov J.R., “On a problem for the time-fractional diffusion equation on a metric graphs”, Uzbek Mathematical Journal, 2017, no. 4, 3–12 | MR

[21] Mehandiratta V., Mehra M., “A difference scheme for the time-fractional diffusion equation on a metric star graph”, Applied Numerical Mathematics, 158 (2020), 152–163 | DOI | MR | Zbl

[22] Karimov E.T., Sobirov Z.A., Khujakulov J.R., “Solvability of a problem for a time fractional differential equation with the Hilfer operator on metric graphs”, Bulletin of the Institute of Mathematics, 2021, no. 4, 9–18 | MR

[23] Berkolaiko G., Kuchment P., Introduction to Quantum Graphs, American Mathematical Society, Providence, 2013 | MR | Zbl

[24] Alikhanov A.A., “A priori estimate for solutions of boundary value problems for fractional-order equations”, Differential Equations, 46:5 (2010), 660–666 | DOI | MR | Zbl

[25] Brio M., Caputo J.G., Kravitz H., “Spectral solution of PDEs on networks”, Apllied Numerical Mathematics, 172 (2022), 99–117 | DOI | MR | Zbl

[26] Friedman J., Tillich J.-P., “Wave equations for graphs and the edge-based Laplacian”, Pacific Journal of Mathematics, 216:2 (2004), 228–266 | DOI | MR

[27] Berkolaiko G., Kuchment P., “Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths”, Spectral Geometry, Proceedings of Symposia in Pure Mathematics, 84, American Mathematical Society, Providence, 2012, 117–137 | DOI | MR | Zbl

[28] Berkolaiko G., “An elementary introduction to quantum graphs”, Contemporary Mathematics, Geometric and Computational Spectral Theory, American Mathematical Society, Providence, 2017, 41–72 | DOI | MR | Zbl

[29] Kadirkulov B.J., Jalilov M.A., “On a nonlocal problem for fourth-order mixed type equation with the Hilfer operator”, Bulletin of the Institute of Mathematics, 2020, no. 1, 59–67 (In Russ.) | MR