Formal normalization of binary differential equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 212-227

Voir la notice de l'article provenant de la source Math-Net.Ru

Implicit differential equations (binary differential equations) of the form $ap^2+2bp+c=0$ are considered, where $a=a(x,y),~b=b(x,y),~c=c(x,y),~p=\frac{dy}{dx}$, such that $a(0,0)=b(0,0)=c(0,0)=0$. It is shown that a typical equation of this type by formal substitutions of coordinates $(x,y)\longmapsto(X,Y)$ can be reduced to the formal normal form $(\alpha X+\beta Y+\gamma(X))P^2+X+Y=0,~P=\frac{dY}{dX}$, where $\alpha,\beta\in \mathbb{C}\setminus\{0\}$, $\gamma$ is a formal series in the variable $X$, $\gamma(0)=0,~\gamma'(0)=0.$
Keywords: binary differential equation, implicit differential equation, formal normal form.
@article{CHFMJ_2023_8_2_a4,
     author = {E. A. Cherepanova},
     title = {Formal normalization of binary differential equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {212--227},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a4/}
}
TY  - JOUR
AU  - E. A. Cherepanova
TI  - Formal normalization of binary differential equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 212
EP  - 227
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a4/
LA  - ru
ID  - CHFMJ_2023_8_2_a4
ER  - 
%0 Journal Article
%A E. A. Cherepanova
%T Formal normalization of binary differential equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 212-227
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a4/
%G ru
%F CHFMJ_2023_8_2_a4
E. A. Cherepanova. Formal normalization of binary differential equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 212-227. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a4/