Formal normalization of binary differential equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 212-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

Implicit differential equations (binary differential equations) of the form $ap^2+2bp+c=0$ are considered, where $a=a(x,y),~b=b(x,y),~c=c(x,y),~p=\frac{dy}{dx}$, such that $a(0,0)=b(0,0)=c(0,0)=0$. It is shown that a typical equation of this type by formal substitutions of coordinates $(x,y)\longmapsto(X,Y)$ can be reduced to the formal normal form $(\alpha X+\beta Y+\gamma(X))P^2+X+Y=0,~P=\frac{dY}{dX}$, where $\alpha,\beta\in \mathbb{C}\setminus\{0\}$, $\gamma$ is a formal series in the variable $X$, $\gamma(0)=0,~\gamma'(0)=0.$
Keywords: binary differential equation, implicit differential equation, formal normal form.
@article{CHFMJ_2023_8_2_a4,
     author = {E. A. Cherepanova},
     title = {Formal normalization of binary differential equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {212--227},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a4/}
}
TY  - JOUR
AU  - E. A. Cherepanova
TI  - Formal normalization of binary differential equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 212
EP  - 227
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a4/
LA  - ru
ID  - CHFMJ_2023_8_2_a4
ER  - 
%0 Journal Article
%A E. A. Cherepanova
%T Formal normalization of binary differential equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 212-227
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a4/
%G ru
%F CHFMJ_2023_8_2_a4
E. A. Cherepanova. Formal normalization of binary differential equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 212-227. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a4/

[1] Bruce J. W., Tari F., “On binary differential equations”, Nonlinearity, 8:2 (1995), 255–271 | DOI | MR | Zbl

[2] Bruce J. W., Giblin P. J., Tari F., Isotopies of surfaces in Euclidean 3-space, duals, Gauss maps and outlines, University of Liverpool, 1993 | MR

[3] Kuz'min A.G., Nonclassical Equations of Mixed Type and Their Applications in Gas Dynamics, Birkhauser, Basel, 1992 | MR

[4] Kuz'min A.G., “On the behavior of the characteristics of mixed type equations near the line of degeneracy”, Differential equations, 17:11 (1981), 2052–2063 (In Russ.) | MR | Zbl

[5] Davydov A.A., “Normal form of a differential equation, not solvable for the derivative, in a neighborhood of a singular point”, Functional Analysis and Its Applications, 19:2 (1985), 81–89 | DOI | MR | Zbl

[6] Guinez V., “Positive quadratic differential forms and foliations with singularities on surfaces”, Transactions of the American Mathematical Society, 309:2 (1988), 477–502 | DOI | MR | Zbl

[7] Dara L., “Singularites generiques des equations differentielles multiformes”, Bulletin of the Brazilian Mathematical Society, 6:2 (1975), 95–128 | DOI | MR | Zbl

[8] Sotomayor J., Gutierrez C., “Structurally stable configurations of lines of principal curvature”, Asterisque, 1982, no. 98–99, 195–215 | MR

[9] Cherepanova E.A., Voronin S.M., “Analytic normalization of foliations induced by binary equations”, Complex Analysis, Mathematical Physics and Nonlinear Equations, Abstracts of the International Scientific Conference. Ufa, Aeterna, 2021, 76–78 (In Russ.)

[10] Ortiz-Bobadilla L., Rosales-Gonzalez E., Voronin S.M., “Formal and analytic normal forms of germs of holomorphic nondicritic foliations”, Journal of Singularities, 8 (2014), 168–192 | MR