Plasticity incipience in aluminum with copper inclusions
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 292-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dislocation activity controls the plastic deformation in the most of metallic materials. Mechanical loading with high strain rates or with high strain gradients can lead to either homogeneous nucleation of the dislocation or emission of dislocations from various heterogeneities, such as nanopores and phase precipitates. The dislocation nucleation and emission trigger plasticity, which relaxes the shear component of stresses. In this work, we study the threshold of dislocation emission from nanosized copper inclusions in an aluminum single crystal in comparison with the homogeneous nucleation of dislocations in pure metal. We consider different shapes of inclusions (spherical, cylindrical and cubic) and rather arbitrary axisymmetric deformations by means of molecular dynamics (MD) simulations. For most deformation paths, the copper inclusions substantially reduce the threshold of plasticity incipience, while the inclusions have no effect for some deformation paths with either axial or transverse extension. Depending on the deformation path, the shape of inclusion can either influence the emission threshold or not. Thus, there is a complex dependence of the threshold of plasticity incipience on the deformation path, the presence and the form of copper inclusions. This dependence is approximated by means of an artificial neural network (ANN) trained on the results of MD simulations. The trained ANN can be further applied as a constitutive equation at the level of continuum mechanics.
Keywords: aluminum, copper inclusion, plasticity incipience, emission of dislocations, molecular dynamics, artificial neural network.
@article{CHFMJ_2023_8_2_a11,
     author = {A. E. Mayer},
     title = {Plasticity incipience in aluminum with copper inclusions},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {292--304},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a11/}
}
TY  - JOUR
AU  - A. E. Mayer
TI  - Plasticity incipience in aluminum with copper inclusions
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 292
EP  - 304
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a11/
LA  - en
ID  - CHFMJ_2023_8_2_a11
ER  - 
%0 Journal Article
%A A. E. Mayer
%T Plasticity incipience in aluminum with copper inclusions
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 292-304
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a11/
%G en
%F CHFMJ_2023_8_2_a11
A. E. Mayer. Plasticity incipience in aluminum with copper inclusions. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 2, pp. 292-304. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_2_a11/

[1] Tschopp M.A., McDowell D.L., “Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper”, Applied Physics Letters, 90 (2007), 121916 | DOI

[2] Aubry S., Kang K., Ryu S., Cai W., “Energy barrier for homogeneous dislocation nucleation: comparing atomistic and continuum models”, Scripta Materialia, 64:11 (2011), 1043–1046 | DOI

[3] Norman G.E., Yanilkin A.V., “Homogeneous nucleation of dislocations”, Physics of the Solid State, 53:8 (2011), 1614–1619 | DOI

[4] Xie H., Yu T., Yin F., “Tension-compression asymmetry in homogeneous dislocation nucleation stress of single crystals Cu, Au, Ni and Ni3Al”, Materials Science and Engineering: A, 604 (2014), 142–147 | DOI | MR

[5] Shehadeh M.A., Zbib H.M., “On the homogeneous nucleation and propagation of dislocations under shock compression”, Philosophical Magazine, 96:26 (2016), 2752–2778 | DOI

[6] Mayer A.E., Krasnikov V.S., Pogorelko V.V., “Dislocation nucleation in Al single crystal at shear parallel to (111) plane: Molecular dynamics simulations and nucleation theory with artificial neural networks”, International Journal of Plasticity, 139 (2021), 102953 | DOI

[7] Tschopp M.A., McDowell D.L., “Dislocation nucleation in $\Sigma 3$ asymmetric tilt grain boundaries”, International Journal of Plasticity, 24:2 (2008), 191–217 | DOI

[8] Guleryuz E., Mesarovic S.D., “Dislocation nucleation on grain boundaries: low angle twist and asymmetric tilt boundaries”, Crystals, 6:7 (2016), 77 | DOI

[9] Wyman R.D., Fullwood D.T., Wagoner R.H., Homer E.R., “Variability of non-Schmid effects in grain boundary dislocation nucleation criteria”, Acta Materialia, 124 (2017), 588–597 | DOI

[10] Turlo V., Rupert T.J., “Grain boundary complexions and the strength of nanocrystalline metals: dislocation emission and propagation”, Acta Materialia, 151 (2018), 100–111 | DOI

[11] Bobylev S.V., Enikeev N.A., Sheinerman A.G., Valiev R.Z., “Strength enhancement induced by grain boundary solute segregations in ultrafine-grained alloys”, International Journal of Plasticity, 123 (2019), 133–144 | DOI

[12] Borovikov V., Mendelev M.I., King A.H., “Effects of grain boundary disorder on dislocation emission”, Materials Letters, 237 (2019), 303–305 | DOI

[13] Krasnikov V.S., Mayer A.E., “Plasticity driven growth of nanovoids and strength of aluminum at high rate tension: molecular dynamics simulations and continuum modeling”, International Journal of Plasticity, 74 (2015), 75–91 | DOI

[14] Feng H., Pang J., Fang Q., Chen C., Wen P., “Enhanced ductility of nanomaterials through cooperative dislocation emission from cracks and grain boundaries”, International Journal of Mechanical Sciences, 179 (2020), 105652 | DOI

[15] Latypov F.T., Mayer A.E., Krasnikov V. S., “Dynamics of growth and collapse of nanopores in copper”, International Journal of Solids and Structures, 202 (2020), 418–433 | DOI

[16] Bryukhanov I.A., Kovalev V.L., Larin A.V., “Nucleation of dislocations in aluminum alloys with copper”, Physics of the Solid State, 57:9 (2015), 1807–1817 | DOI

[17] Bryukhanov I.A., Larin A.V., “Mechanisms and rate of dislocation nucleation in aluminum-copper alloys near Guinier — Preston zones”, Journal of Applied Physics, 120:23 (2016), 235106 | DOI

[18] Pogorelko V.V., Mayer A.E., “Influence of copper inclusions on the strength of aluminum matrix at high-rate tension”, Materials Science and Engineering: A, 642 (2015), 351–359 | DOI

[19] Geslin P.-A., Gatti R., Devincre B., Rodney D., “Implementation of the nudged elastic band method in a dislocation dynamics formalism: application to dislocation nucleation”, Journal of the Mechanics and Physics of Solids, 108 (2017), 49–67 | DOI | MR

[20] Ashitkov S.I., Komarov P.S., Struleva E.V., Agranat M.B., Kanel G.I., “Mechanical and optical properties of vanadium under shock picosecond loads”, JETP Letters, 101 (2015), 276–281 | DOI

[21] Zuanetti B., McGrane S.D., Bolme C.A., Prakash V., “Measurement of elastic precursor decay in pre-heated aluminum films under ultra-fast laser generated shocks”, Journal of Applied Physics, 123:19 (2018), 195104 | DOI

[22] Komarov P.S., Struleva E.V., Ashitkov S.I., “Generation of giant elastic ultrashort shock waves in chromium films by femto-second laser pulses”, Journal of Physics: Conference Series, 1147:1 (2019), 012023 | DOI

[23] Merkel S., Hok S., Bolme C., Rittman D., Ramos K.J., Morrow B., Lee H.J., Nagler B., Galtier E., Granados E., Hashim A., Mao W.L., Gleason A.E., “Femtosecond visualization of hcp-iron strength and plasticity under shock compression”, Physical Review Letters, 127:20 (2021), 205501 | DOI

[24] Garg A., Maloney C.E., “Universal scaling laws for homogeneous dislocation nucleation during nano-indentation”, Journal of the Mechanics and Physics of Solids, 95 (2016), 742–754 | DOI

[25] Zhao K., He J., Mayer A.E., Zhang Z., “Effect of hydrogen on the collective behavior of dislocations in the case of nanoindentation”, Acta Materialia, 148 (2018), 18–27 | DOI

[26] Zhao K., Mayer A.E., He J., Zhang Z., “Dislocation based plasticity in the case of nanoindentation”, International Journal of Mechanical Sciences, 148 (2018), 158–173 | DOI

[27] Gerold V., “On the structures of Guinier — Preston zones in Al single bond Cu alloys introductory paper”, Scripta Metallurgica, 22:7 (1988), 927–932 | DOI

[28] Starink M.J., Zahra A.-M., “Mechanisms of combined GP zone and $\theta^{\prime}$ precipitation in an Al-Cu alloy”, Journal of Materials Science Letters, 16 (1997), 1613–1615 | DOI

[29] Ma Z., Zhan L., Liu C., Xu L., Xu Y., Ma P., Li J., “Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy: experiments and modeling”, International Journal of Plasticity, 110 (2018), 183–201 | DOI

[30] Zuiko I., Kaibyshev R., “Effect of plastic deformation on the ageing behaviour of an A-Cu-Mg alloy with a high Cu/Mg ratio”, Materials Science and Engineering: A, 737 (2018), 401–412 | DOI

[31] Krasnikov V.S., Mayer A.E., Pogorelko V.V., Latypov F.T., Ebel A.A., “Interaction of dislocation with GP zones or $\theta^{\prime\prime}$ phase precipitates in aluminum: atomistic simulations and dislocation dynamics”, International Journal of Plasticity, 125 (2020), 169–190 | DOI | MR

[32] Krasnikov V.S., Mayer A.E., Pogorelko V.V., “Prediction of the shear strength of aluminum with $\theta$ phase inclusions based on precipitate statistics, dislocation and molecular dynamics”, International Journal of Plasticity, 128 (2020), 102672 | DOI

[33] Zuiko I., Kaibyshev R., “Ageing response of cold-rolled Al-Cu-Mg alloy”, Materials Science and Engineering: A, 781 (2020), 139148 | DOI

[34] Sun W., Zhu Y., Marceau R., Wang L., Zhang Q., Gao X., Hutchinson C., “Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity”, Science, 363 (2019), 972–975 | DOI

[35] Mayer A.E., Krasnikov V.S., Pogorelko V.V., “Homogeneous nucleation of dislocations in copper: Theory and approximate description based on molecular dynamics and artificial neural networks”, Computational Materials Science, 206 (2022), 111266 | DOI

[36] Mayer A.E., Lekanov M.V., Grachyova N.A., Fomin E.V., “Machine-learning-based model of elastic-plastic deformation of copper for application to shock wave problem”, Metals, 12 (2022), 402 | DOI

[37] Plimpton S., “Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI | Zbl

[38] Apostol F., Mishin Y., “Interatomic potential for the Al-Cu system”, Physical Review B, 83 (2011), 054116 | DOI

[39] Daw M.S., Baskes M.I., “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B, 29 (1984), 6443 | DOI

[40] Mishin Y., Mehl M.J., Papaconstantopoulos D., “Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations”, Acta Materialia, 53:15 (2005), 4029–4041 | DOI

[41] Stukowski A., “Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18:1 (2010), 015012 | DOI

[42] Stukowski A., Bulatov V.V., Arsenlis A., “Automated identification and indexing of dislocations in crystal interfaces”, Modelling and Simulation in Materials Science and Engineering, 20:8 (2012), 085007 | DOI | MR

[43] Stukowski A., “Computational analysis methods in atomistic modeling of crystals”, JOM, 66 (2014), 399–407 | DOI | MR

[44] Kelchner C.L., Plimpton S.J., Hamilton J.C., “Dislocation nucleation and defect structure during surface indentation”, Physical Review B, 58:17 (1998), 11085 | DOI

[45] Hoover W.G., “Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, 31:3 (1985), 1695–1697 | DOI

[46] Latypov F.T., Fomin E.V., Krasnikov V.S., Mayer A.E., “Dynamic compaction of aluminum with nanopores of varied shape: MD simulations and machine-learning-based approximation of deformation behavior”, International Journal of Plasticity, 156 (2022), 103363 | DOI

[47] Gracheva N.A., Lekanov M.V., Mayer A.E., Fomin E.V., “Application of neural networks for modeling shock-wave processes in aluminum”, Mechanics of Solids, 56 (2021), 326–342 | DOI