Study of hydroxil group adsorbtion on the graphene layers 5-7 and 3-12
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 83-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theoretical study of the electronic and physical properties of the 5-7 graphene layers of T1 structural type with adsorbed hydroxyl group (-OH) ($COH-L_{5-7-T1}$) attachment types T1 and T2, as well as the graphene layer 3-12 $COH-L_{3-12}$ functionalized by -OH group with a single attachment type was carried out using the density functional theory in a generalized gradient approximation. As result of the optimization, the layer based on 3-12 graphene with a hexagonal primitive unit cell turned out to be unstable. Two functionalized layer types with monoclinic primitive unit cells based on the graphene 5-7 of the T1 structural type are stable with large lengths of carbon-carbon bonds and elementary translations compared to a pure graphene layer and a fluorine-functionalized layer. Out of these layers based on $COH-L_{5-7-T1}$, the T1 type of attachment -OH has a layer density of 1.61 mg/m${}^2$, while the layer density of the -OH attachment type T2 is 1.67 mg/m${}^2$. In the 5-7 layers with an adsorbed -OH group, the T1 type of -OH attachment has sublimation energy of 18.20 eV/(COH). The sublimation energy of T2 -OH attachment type, equal to 18.72 eV/(COH), is greater than the sublimation energy for one of the types of -OH functionalized hexagonal graphene, which indicates high thermal stability. The widths of the band gaps of the layers is 3.74 and 3.95 eV for types T1 and T2, respectively. The range of variation of the band gap widths in comparison with the range for similar 5-7 fluorografene layers is narrower with a lower upper limit and a higher lower limit.
Keywords: graphene, functionalized graphene, atom-atomic potential method, ab initio calculations, polymorphism, crystal structure, electronic structure.
@article{CHFMJ_2023_8_1_a6,
     author = {M. E. Belenkov and V. M. Chernov},
     title = {Study of hydroxil group adsorbtion on the graphene layers 5-7 and 3-12},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a6/}
}
TY  - JOUR
AU  - M. E. Belenkov
AU  - V. M. Chernov
TI  - Study of hydroxil group adsorbtion on the graphene layers 5-7 and 3-12
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 83
EP  - 91
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a6/
LA  - ru
ID  - CHFMJ_2023_8_1_a6
ER  - 
%0 Journal Article
%A M. E. Belenkov
%A V. M. Chernov
%T Study of hydroxil group adsorbtion on the graphene layers 5-7 and 3-12
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 83-91
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a6/
%G ru
%F CHFMJ_2023_8_1_a6
M. E. Belenkov; V. M. Chernov. Study of hydroxil group adsorbtion on the graphene layers 5-7 and 3-12. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a6/

[1] Novoselov K. S., Geim A. K., Morozov S. V., et al., “Electric field effect in atomically thin carbon films”, Science, 306:5696 (2004), 666–669

[2] Nair R. R., Blake P., Grigorenko A. N., et al., “Fine structure constant defines visual transparency of graphene”, Science, 320:5881 (2008), 1308

[3] Castro Neto A. H., Guinea F., Peres N. M. R., et al., “The electronic properties of graphene”, Reviews of Modern Physics, 81 (2009), 109–162

[4] Faugeras C., Faugeras B., Orlita M., et al., “Thermal conductivity of graphene in corbino membrane geometry”, ACS Nano, 4 (2010), 1889–1892

[5] Cao K., Feng S., Han Y., et al., “Elastic straining of free-standing monolayer graphene”, Nature Communications, 11 (2020), 284

[6] Lian B., Wang Z., Bernevig B. A., “Twisted bilayer graphene: a phonon driven superconductor”, Physical Review Letters, 122 (2019), 257002

[7] Xu P. J., Yang J., Wang K., et al., “Porous graphene: properties, preparation, and potential applications”, Chinese Science Bulletin, 57:23 (2012), 2948–2955

[8] Celis A., Nair M. N., Taleb-Ibrahimi A., et al., “Graphene nanoribbons: fabrication, properties and devices”, Journal of Physics D. Applied Physics, 49:14 (2016), 143001

[9] Elias D. C., Nair R. R., Mohiuddin T. M. G., et al., “Control of graphene's properties by reversible hydrogenation: evidence for graphane”, Science, 323:5914 (2009), 610–613

[10] Nair R. R., Ren W., Jalil R., et al., “Fluorographene: a two-dimensional counterpart of teflon”, Small, 6:24 (2010), 2877–2884

[11] Sahin H., Ciraci S., Belenkov, “Chlorine adsorption on graphene: Chlorographene”, The Journal of Physical Chemistry C, 116:45 (2012), 24075–24083

[12] Rani P., Jindal V. K., “Designing band gap of graphene by B and N dopant atoms”, RSC Advances, 3 (2013), 802–812

[13] Kong L., Enders A., Rahman T. S., “Molecular adsorption on graphene”, Journal of Physics: Condensed Matter, 26:44 (2014), 443001

[14] Belenkov M. E., Chernov V. M., Belenkov E. A., et al., “Structure and electronic properties of 5-7 graphene”, IOP Conference Series: Materials Science and Engineering, 447 (2018), 12005

[15] Belenkov E.A., Kochengin A.E., “Structure and electronic properties of crystals consisting of graphene layers L$_6$, L$_{4-8}$, L$_{3-12}$ and L$_{4-6-12}$”, Physics of the Solid State, 57:10 (2015), 2071–2078 (In Russ.)

[16] Duan Y., Stinespring C. D., Chorpening B., “Electronic structures, bonding configurations, and band-gap-opening properties of graphene binding with low-concentration fluorine”, Chemistry Open, 4:5 (2015), 642–650

[17] Belenkov E. A., Shabiev F. K., “Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis”, Letters on Materials, 5:4 (2015), 459–462

[18] Chen D., Feng H. M., Li J., “Graphene oxide: preparation, functionalization, and electrochemical applications”, Chemical Reviews, 112:11 (2012), 6027–6053

[19] Belenkov M. E., Chernov V. M., Belenkov E. A., “Structure and electronic properties of polymorphic types of fluorographene”, Chelyabinsk Physical and Mathematical Journal, 3:2 (2018), 202–211 (In Russ.)

[20] Belenkov M. E., Chernov V. M., Belenkov E. A., “New polymorphic varieties of fluorographene forming during fluorine functionalization of 4-8 graphene layers”, Journal of Physics: Conference Series, 1410 (2019), 012012

[21] Belenkov M.E., Chernov V.M., “Crystal and electronic structure of 3-12 graphene functionalized by fluorine”, Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 11 (2019), 406–413 (In Russ.)

[22] Belenkov M.E., Chernov V.M., “Ab initio calculations of the crystalline and electronic structure of 5-7 fluorographene varieties.”, Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 12 (2020), 326–337 (In Russ.)

[23] Banhart F., Kotakoski J., Krasheninnikov A. V., “Structural defects in graphene”, ACS Nano, 5 (2011), 26–41

[24] Huang P., Ruiz-Vargas C., van der Zande A., et al., “Grains and grain boundaries in single-layer graphene atomic patchwork quilts”, Nature, 469 (2011), 389–392

[25] Giannozzi P., Andreussi O., Brumme T., et al., “Advanced capabilities for materials modelling with Quantum ESPRESSO”, Journal of Physics: Condensed Matter, 29:46 (2017), 465901

[26] Belenkov M.E., Chernov V.M., “Modelling of hexagonal graphene polymorphic varieties functionalized by hydroxyl groups”, Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 14 (2021), 541–551 (In Russ.)