Some congruences involving inverse of binomial coefficients
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 59-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be an odd prime number. In this paper, among other results, we establish some congruences involving inverse of binomial coefficients. These congruences are mainly determined modulo $p$, $p^{2}$, $p^{3}$ and $p^{4}$ in the $p$-integers ring in terms of Fermat quotients, harmonic numbers and Bernoulli numbers in a simple way. Furthermore, we extend an interesting theorem of E. Lehmer to the class of inverse binomial coefficients.
Keywords: congruence, binomial coefficient, Fermat quotient, gamma function.
@article{CHFMJ_2023_8_1_a4,
     author = {L. Khaldi and R. Boumahdi},
     title = {Some congruences involving inverse of binomial coefficients},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {59--71},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a4/}
}
TY  - JOUR
AU  - L. Khaldi
AU  - R. Boumahdi
TI  - Some congruences involving inverse of binomial coefficients
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 59
EP  - 71
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a4/
LA  - en
ID  - CHFMJ_2023_8_1_a4
ER  - 
%0 Journal Article
%A L. Khaldi
%A R. Boumahdi
%T Some congruences involving inverse of binomial coefficients
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 59-71
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a4/
%G en
%F CHFMJ_2023_8_1_a4
L. Khaldi; R. Boumahdi. Some congruences involving inverse of binomial coefficients. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 59-71. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a4/

[1] Gauss C.F., Recherches arithmétiques, traduction française de Disquisitiones Arithmeticae, Blanchard, Paris, 1953

[2] Babbage C., “Demonstration of a theorem relating to prime numbers”, Edinburgh Philosophical Journal, 1 (1819), 46–49

[3] Meštrović R., “Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862–2012)”, 2011, arXiv: 1111.3057

[4] Wolstenholme J., “On certain properties of prime numbers”, The Quarterly Journal of Pure and Applied Mathematics, 5 (1862), 35–39

[5] Glaisher J.W.L., “On the residues of the sums of products of the first $p - 1$ numbers, and their powers, to modulus $p^{2}$ or $p^{3}$”, The Quarterly Journal of Mathematics, 31 (1900), 321–353

[6] Morley F., “Note on the congruence $2^{4n}\equiv \left(-1\right) ^{n}\frac{2n}{\left( n!\right) ^{2}}$, where $2n+1$ is a prime”, Annals of Mathematics, 9 (1895), 168–170

[7] Ayad M., Kihel O., “Recognizing the primes using permutations”, International Journal of Number Theory, 8:8 (2012), 2045–2057

[8] Carlitz L., “A theorem of Glaisher”, Canadian Journal of Mathematics, 5 (1953), 306–316

[9] Sun Z.W., “On congruences related to central binomial coefficients”, Journal of Number Theory, 131 (2011), 2219–2238

[10] Berndt B.C., Evans R.J., Williams K.S., Gauss and Jacobi Sums, John Wiley and Sons Inc., 1998

[11] Gould H.W., Combinatorial Identities, Morgantown Printing and Binding Co, New York, 1972

[12] Chowla S., Dwork B., Evans R., “On the mod $p^{2}$ determination of $\binom{\frac{p-1}{2}}{\frac{p-1}{4}}$”, Journal of Number Theory, 24:2 (1986), 188–196

[13] Hudson R.H., Williams K.S., “Binomial coefficients and Jacobi sums”, Transactions of the American Mathematical Society, 281:2 (1984), 431–505

[14] Lehmer E., “On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson”, Annals of Mathematics, 39 (1938), 350–360

[15] Eisenstein F.G., “Eine neue Gattung zahlentheoretischer Funktionnen, welche von zwei Elementen ahhängen und durch gewisse linear Funktional-Gleichungen definirt werden”, Berichte Knigl. Preuss. Akad. Wiss. Berlin, 15 (1850), 36–42