Some congruences involving inverse of binomial coefficients
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 59-71

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be an odd prime number. In this paper, among other results, we establish some congruences involving inverse of binomial coefficients. These congruences are mainly determined modulo $p$, $p^{2}$, $p^{3}$ and $p^{4}$ in the $p$-integers ring in terms of Fermat quotients, harmonic numbers and Bernoulli numbers in a simple way. Furthermore, we extend an interesting theorem of E. Lehmer to the class of inverse binomial coefficients.
Keywords: congruence, binomial coefficient, Fermat quotient, gamma function.
@article{CHFMJ_2023_8_1_a4,
     author = {L. Khaldi and R. Boumahdi},
     title = {Some congruences involving inverse of binomial coefficients},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {59--71},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a4/}
}
TY  - JOUR
AU  - L. Khaldi
AU  - R. Boumahdi
TI  - Some congruences involving inverse of binomial coefficients
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 59
EP  - 71
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a4/
LA  - en
ID  - CHFMJ_2023_8_1_a4
ER  - 
%0 Journal Article
%A L. Khaldi
%A R. Boumahdi
%T Some congruences involving inverse of binomial coefficients
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 59-71
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a4/
%G en
%F CHFMJ_2023_8_1_a4
L. Khaldi; R. Boumahdi. Some congruences involving inverse of binomial coefficients. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 59-71. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a4/