On Stepanov-like almost periodicity in mixed Lebesgue spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to revisit the recently analyzed class of multi-dimensional Stepanov almost periodic functions. We introduce and study several new classes of Stepanov-like almost periodic functions in the mixed Lebesgue spaces. We also provide a new application of multi-dimensional Stepanov almost periodic functions to the abstract nonautonomous differential equations of first order, provided that all components of the exponent $\vec{p}\in [1,\infty)^{n}$ are equal.
Keywords: Stepanov-like almost periodic function in mixed Lebesgue space, multi-dimensional Stepanov almost periodic function, abstract nonautonomous differential equation of first order.
@article{CHFMJ_2023_8_1_a3,
     author = {F. Z. Ben Cheikh and M. T. Khalladi and M. Kosti\'c},
     title = {On {Stepanov-like} almost periodicity in mixed {Lebesgue} spaces},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a3/}
}
TY  - JOUR
AU  - F. Z. Ben Cheikh
AU  - M. T. Khalladi
AU  - M. Kostić
TI  - On Stepanov-like almost periodicity in mixed Lebesgue spaces
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2023
SP  - 47
EP  - 58
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a3/
LA  - en
ID  - CHFMJ_2023_8_1_a3
ER  - 
%0 Journal Article
%A F. Z. Ben Cheikh
%A M. T. Khalladi
%A M. Kostić
%T On Stepanov-like almost periodicity in mixed Lebesgue spaces
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2023
%P 47-58
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a3/
%G en
%F CHFMJ_2023_8_1_a3
F. Z. Ben Cheikh; M. T. Khalladi; M. Kostić. On Stepanov-like almost periodicity in mixed Lebesgue spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 8 (2023) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/CHFMJ_2023_8_1_a3/

[1] Bohr H., Almost Periodic Functions, Chelsea Publishing Company, New York, 1947

[2] Chávez A., Khalil K., Kostić M., Pinto M., “Multi-dimensional almost periodic type functions and applications”, 2020, arXiv: 2012.00543

[3] Kostić M., Selected Topics in Almost Periodicity, W. de Gruyter, Berlin, 2022

[4] Katznelson Y., An Introduction to Harmonic Analysis, Cambridge University Press, Cambridge, Cambridge, 2004

[5] Amerio L., Prouse G., Almost Periodic Function and Functional Equations, Springer, New York, 1971

[6] Besicovitch A.S., Almost Periodic Functions, Dover Publ, New York, 1954

[7] Corduneanu C., Gheorghiu N., Barbu V., Almost Periodic Functions, Chelsea Publishing Company, 1989

[8] Fink A.M., Almost Periodic Differential Equations, Springer-Verlag, Berlin, Heidelberg, 1974

[9] Kostić M., Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations, W. de Gruyter, Berlin, 2019

[10] Pankov A.A., Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations, Kluwer Acad. Publ., Dordrecht, 1990

[11] Levitan B.M., Almost Periodic Functions, G.I.T.T.L., Moscow, 1953 (In Russ.)

[12] Zaidman S., Almost-Periodic Functions in Abstract Spaces, Pitman, Boston, 1985

[13] Fedorov V.E., Kostić M., “Multi-dimensional Weyl almost periodic type functions and applications”, arXiv: 101.11754

[14] Lenz D., Spindeler T., Strungaru N., “Pure point diffraction and mean, Besicovitch and Weyl almost periodicity”, arXiv: 2006.10821

[15] Spindeler T., “Stepanov and Weyl almost periodicity functions in locally compact Abelian groups”, arXiv: 2006.07266v1

[16] Chávez A., Khalil K., Kostić M., Pinto M., “Stepanov multi-dimensional almost periodic functions and applications”, Filomat, 37:12 (2023), 3681–3713

[17] Hörmander L., “Estimates for translation invariant operators in $L^{p}$ spaces”, Acta Mathematica, 104 (1960), 93–140

[18] Benedek A., Panzone R., “The space $L^{p}$, with mixed norm”, Duke Mathematical Journal, 28 (1961), 301–324

[19] Algervik R., Embedding Theorems for Mixed Norm Spaces and Applications, Karlstad University Studies, Karlstad, 2008

[20] Cleanthousm G., Georgiadis A.G., Nielsen M., “Anisotropic mixed-norm Hardy spaces”, Journal of Geometric Analysis, 27 (2017), 2758–2787

[21] Fernandez D.L., “Vector-valued singular integral operators on $L^p$-spaces with mixed norms and applications”, Pacific Journal of Mathematics, 129 (1987), 257–275

[22] Galmarino A.R., Panzone R., “$L^{P}$-Spaces with mixed norm, for $P$ a sequence”, Journal of Mathematical Analysis and Applications, 10 (1965), 494–518

[23] Georgiadis A.G., Nielsen M., “Pseudodifferential operators on mixed-norm Besov and Triebel — Lizorkin spaces”, Mathematische Nachrichten, 289 (2016), 2019–2036

[24] Junge M., Parcet R., “Mixed-norm inequalities and operator space $L_{p}$ embedding theory”, Memoirs of the American Mathematical Society, 203:953 (2010), vi+155

[25] Stefanov A., Torres R.H., “Calderon — Zygmund operators on mixed Lebesgue spaces and applications to null forms”, Journal of the London Mathematical Society, 70 (2004), 447–462

[26] Zhao J., Du W.-S., Chen Y., “New generalizations and results in shift-invariant subspaces of mixed-norm Lebesgue spaces $L_{\vec{p}}({\mathbb R}^{d})$”, Mathematics, 9:3 (2021), 227

[27] Fecihtinger H., Gröchening K., “Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view”, Wavelets: A Tutorial in Theory and Applications, 2 (1992), 359–397, Allied Publishers

[28] Heil C., “An introduction to weighted Wiener amalgams”, Wavelets and Their Applications, 2003, 183–216, Allied Publishers, New Delhi

[29] Rauhut H., “Wiener amalgam spaces with respect to quasi-Banach spaces”, Colloquium Mathematicum, 109 (2007), 345–362

[30] Teofanov N., Ultramodulation Spaces and Pseudodifferential Operators, Endowment Andrejević, Beograd, 2003

[31] Gröchenig K., Foundations of Time-Frequency Analysis, Birkhäuser-Verlag, Berlin, 2001

[32] Bohr H., Fölner E., “On some types of functional spaces: A contribution to the theory of almost periodic functions”, Acta Mathematica, 76 (1944), 31–155