Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 412-423

Voir la notice de l'article provenant de la source Math-Net.Ru

A new type of non-classical three-dimensional contact problems formulated over non-convex admissible sets is proposed. Namely, we assume that a composite body in its undeformed state touches a wedge-shaped obstacle at a single point of contact. Investigated composite bodies consist of an elastic matrix and a rigid inclusion. In this case, displacements on a set corresponding to a rigid inclusion have a given structure that describes possible parallel translations and rotations of the inclusion. A rigid inclusion is located on the outer boundary of the body and has a special geometric shape in the form of a cone. A presence of a rigid inclusion makes it possible to write out a new type of a non-penetration condition for some geometrical configurations of an obstacle and a composite body near the contact point. In this case, sets of admissible displacements can be nonconvex. For the case of a thin rigid inclusion described by a cone, energy minimization problems are formulated. Based on the analysis of auxiliary minimization problems formulated over convex sets, the solvability of problems under study is proved. Under the assumption of a sufficient smoothness of the solution, equivalent differential statements are found. The most important result of this research is the justification of a new type of mathematical models for contact problems with respect to three-dimensional composite bodies.
Keywords: contact problem, rigid inclusion, non-convex set, pointwise contact, non-penetration condition.
@article{CHFMJ_2022_7_4_a1,
     author = {N. P. Lazarev and E. D. Fedotov},
     title = {Three-dimensional {Signorini-type} problem for composite bodies contacting with sharp edges of rigid inclusions},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {412--423},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a1/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - E. D. Fedotov
TI  - Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 412
EP  - 423
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a1/
LA  - ru
ID  - CHFMJ_2022_7_4_a1
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A E. D. Fedotov
%T Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 412-423
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a1/
%G ru
%F CHFMJ_2022_7_4_a1
N. P. Lazarev; E. D. Fedotov. Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 4, pp. 412-423. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_4_a1/