Electron in a quantum well with charges on the walls
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 365-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

An electron is considered in a one-dimensional quantum well, on the walls of which screened positive charges are located. By numerically solving the boundary value problem for the Schrödinger equation, the wave functions and eigenvalues of the electron energy are found. It is shown that both positive and negative discrete values of the electron energy are possible for various combinations of the quantum well width and screening radius. Due to size quantization and Coulomb interaction, zero values of the electron momentum are possible, which is associated with Fermi — Dirac condensation.
Keywords: quantum well, Coulomb interaction, screening, wave functions, electron energy spectrum.
@article{CHFMJ_2022_7_3_a9,
     author = {S.Sh. Rekhviashvili},
     title = {Electron in a quantum well with charges on the walls},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {365--373},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a9/}
}
TY  - JOUR
AU  - S.Sh. Rekhviashvili
TI  - Electron in a quantum well with charges on the walls
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 365
EP  - 373
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a9/
LA  - ru
ID  - CHFMJ_2022_7_3_a9
ER  - 
%0 Journal Article
%A S.Sh. Rekhviashvili
%T Electron in a quantum well with charges on the walls
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 365-373
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a9/
%G ru
%F CHFMJ_2022_7_3_a9
S.Sh. Rekhviashvili. Electron in a quantum well with charges on the walls. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 365-373. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a9/

[1] Shik A.Ya., Bakueva L.G., Musikhin S.F., Rykov S.A., Physics of low-dimensional systems, Nauka Publ., St. Petersburg, 2001 (In Russ.)

[2] Rekhviashvili S., Boyko A., “Investigation of factors affecting the radiation intensity of quantum wells”, Journal of Russian Laser Research, 42:1 (2021), 20–24 | DOI

[3] Stern F., Sarma S. D., “Electron energy levels in GaAs-Ga$_{1-x}$Al$_x$As heterojunctions”, Physical Review B., 30:2 (1984), 840–848 | DOI

[4] Moon C. R., Choe B.-D., Kwon S. D., Lim H., “Electron distribution and capacitance-voltage profiles of multiple quantum well structure from self-consistent simulations”, Applied Physics Letters, 70:22 (1997), 2987–2989 | DOI

[5] Zubkov V.I., “Simulation of capacitance-voltage characteristics of heterostructures with quantum wells using a self-consistent solution of the Schrödinger and Poisson equations”, Physics and technics of semiconductors, 40:10 (2006), 1236–1240 (In Russ.)

[6] Kraeft W.-D., Kremp D., Ebeling W., Röpke G., Quantum Statistics of Charged Particle Systems, Springer, New York, 1986 (In Russ.)

[7] Landau L.D., Lifshits E.M., Quantum Mechanics, Pergamon Press Inc., New York, 1977 | MR

[8] Keller H. B., Numerical Methods for Two-Point Boundary-Value Problems, Dover Publ., New York, 2018 | MR | Zbl

[9] Bardeen J., Cooper L. N., Schrieffer J. R., “Microscopic theory of superconductivity”, Physical Review, 106:1 (1957), 162–164 | DOI | MR

[10] H$\bf{\ddot{a}}$gler Ph., “Hadron structure from lattice quantum chromodynamics”, Physical Reports, 490 (2010), 49–175 | DOI | MR

[11] Chong-Sun Chu, Rong-Xin Miao., “Fermion condensation induced by the Weyl anomaly”, Physical Review D., 102:4 (2020), 046011 | DOI | MR

[12] Regal C. A., Greiner M., Jin D. S., “Observation of resonance condensation of fermionic atom pairs”, Physical Review Letters, 92:4 (2004), 040403 | DOI

[13] Drozdov A. P., Kong P. P., Minkov V. S. et al., “Superconductivity at 250 K in lanthanum hydride under high pressures”, Nature, 569 (2019), 528–531 | DOI