Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_3_a4, author = {T. K. Yuldashev and T. G. Ergashev and T. A. Abduvahobov}, title = {Nonlinear system of impulsive integro-differential equations with {Hilfer} fractional operator and mixed maxima}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {312--325}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a4/} }
TY - JOUR AU - T. K. Yuldashev AU - T. G. Ergashev AU - T. A. Abduvahobov TI - Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 312 EP - 325 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a4/ LA - en ID - CHFMJ_2022_7_3_a4 ER -
%0 Journal Article %A T. K. Yuldashev %A T. G. Ergashev %A T. A. Abduvahobov %T Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 312-325 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a4/ %G en %F CHFMJ_2022_7_3_a4
T. K. Yuldashev; T. G. Ergashev; T. A. Abduvahobov. Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 312-325. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a4/
[1] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Philadelphia, 1993 | MR | Zbl
[2] Mainardi F., “Fractional calculus: some basic problems in continuum and statistical mechanics”, Fractals and Fractional Calculus in Continuum Mechanics, eds. A. Carpinteri, F. Mainardi, F., Springer,, Wien, 1997 | MR
[3] Area I., Batarfi H., Losada J., Nieto J.J., Shammakh W., Torres A., “On a fractional order Ebola epidemic model”, Advances in Difference Equations, 2015, no. 278 | MR
[4] J.A. Tenreiro Machado, Handbook of Fractional calculus with applications, v. 1–8, ed. J.A. Tenreiro Machado, Walter de Gruyter, Berlin, Boston, 2019
[5] Kumar D., Baleanu D., “Editorial: fractional calculus and its applications in physics”, Frontiers in Physics, 7:6 (2019)
[6] Sun H., Chang A., Zhang Y., Chen W., “A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications”, Fractional Calculus and Applied Analysis, 22:1 (2019), 27–59 | DOI | MR | Zbl
[7] Hussain A., Baleanu D., Adeel M., “Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model”, Advances in Difference Equations, 2020, no. 384 | MR
[8] Patnaik S., Hollkamp J.P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476 (2020), 2234 | MR | Zbl
[9] Ullah S., Khan M.A., Farooq M., Hammouch Z., Baleanu D., “A fractional model for the dynamics of tuberculosis infection using Caputo — Fabrizio derivative”, Discrete and Continuous Dynamical Systems. Series S, 13:3 (2020), 975–993 | DOI | MR | Zbl
[10] Abdullaev O.Kh., Islomov B.I., “Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi — Kober operators of fractional order”, Russian Mathematics, 64:10 (2020), 29–42 | DOI | MR | Zbl
[11] Karimov E.T., “Frankl-type problem for a mixed type equation with the Caputo fractional derivative”, Lobachevskii Journal of Mathematics, 41:9 (2020), 1829–1836 | DOI | MR | Zbl
[12] Yuldashev T.K., Kadirkulov B.J., “Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator”, Ural Mathematical Journal, 6:1 (2020), 153–167 | DOI | MR | Zbl
[13] Yuldashev T.K., Karimov E.T., “Inverse problem for a mixed type integro-differential equation with fractional order Caputo operators and spectral parameters”, Axioms, 9:121 (2020) | MR | Zbl
[14] Fedorov V.E., Plekhanova M.V., Izhberdeeva E.M., “Initial value problems of linear equations with the Dzhrbashyan — Nersesyan derivative in Banach spaces”, Symmetry, 13 (2021), 1058 | DOI
[15] Fedorov V. E., Turov M.M., “The defect of a Cauchy type problem for linear equations with several Riemann — Liouville derivatives”, Siberian Math. Journal, 62:5 (2021), 925–942 | DOI | MR | Zbl
[16] Volkova A.R., Izhberdeeva E.M., Fedorov V.E., “Initial value problem for linear equations with composition of fractional derivatives”, Chelyabinsk Physical and Mathematical Journal, 6:3 (2021), 269–277 | MR | Zbl
[17] Yuldashev T.K., Abdullaev O.Kh., “Unique solvability of a boundary value problem for a loaded fractional parabolic-hyperbolic equation with nonlinear terms”, Lobachevskii Journal of Mathematics, 42:5 (2021), 1113–1123 | DOI | MR | Zbl
[18] Yuldashev T.K., Kadirkulov B.J., “Inverse boundary value problem for a fractional differential equations of mixed type with integral redefinition conditions”, Lobachevskii Journal of Mathematics, 42:3 (2021), 649–662 | DOI | MR | Zbl
[19] Volkova A.R., Fedorov V.E., Gordievskikh D.M., “On solvability of some classes of equations with Hilfer derivatives in Banach spaces”, Chelyabinsk Physical and Mathematical Journal, 7:1 (2022), 11–19 | MR | Zbl
[20] Halanay A., Wexler D., Teoria calitativa a sistemelor cu impulsuri, Editura Academiei Republicii Socialiste Romania, Bucuresti, 1968 | MR | Zbl
[21] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989 | MR | Zbl
[22] Samoilenko A.M., Perestyuk N.A., Impulsive differential equations, World Scientific, Singapore, 1995 | MR | Zbl
[23] Benchohra M., Henderson J., Ntouyas S.K., Impulsive Differential Equations and Inclusions, Hindawi Publ., New York, 2006 | MR | Zbl
[24] Boichuk A.A., Samoilenko A.M., Generalized Inverse Operators and Fredholm Boundary Value Problems, Walter de Gruyter, Berlin, Boston, 2016 | MR
[25] Yuldashev T.K., Fayziev A.K., “On a nonlinear impulsive differential equations with maxima”, Bulletin of the Institute of Mathematics, 4:6 (2021), 42–49 | MR
[26] Yuldashev T.K., “Periodic solutions for an impulsive system of nonlinear differential equations with maxima”, Nanosystems: Physics. Chemistry. Mathematics, 13:2 (2022), 135–141 | DOI | MR
[27] Yuldashev T.K., Fayziev A.K., “On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima”, Nanosystems: Physics. Chemistry. Mathematics, 13:1 (2022), 36–44 | DOI
[28] Yuldashev T.K., “Nonlocal mixed-value problem for a Boussinesq-type integrodifferential equation with degenerate kernel”, Ukrainian Mathematical Journal, 68:8 (2016), 1278–1296 | DOI | MR
[29] Yuldashev T.K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii Journal of Mathematics, 38:3 (2017), 547–553 | DOI | MR | Zbl
[30] Yuldashev T.K., “On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel”, Computational Mathematics and Mathematical Physics, 59:2 (2019), 241–252 | DOI | MR | Zbl
[31] Yuldashev T.K., “Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation”, Lobachevskii Journal of Mathematics, 40:12 (2019), 2116–2123 | DOI | MR | Zbl
[32] Yuldashev T.K., “On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter”, Lobachevskii Journal of Mathematics, 40:2 (2019), 230–239 | DOI | MR | Zbl
[33] Assanova A., “An integral-boundary value problem for a partial differential equation of second order”, Turkish Journal of Mathematics, 43:4 (2019), 1967–1978 | DOI | MR | Zbl
[34] Assanova A.T., “On the solvability of nonlocal problem for the system of Sobolev-type differential equations with integral condition”, Georgian Mathematical Journal, 28:1 (2021), 49–57 | DOI | MR | Zbl
[35] Assanova A.T., Imanchiyev A.E., Kadirbayeva Zh.M., “A nonlocal problem for loaded partial differential equations of fourth order”, Bulletin of the Karaganda University. Ser. Mathematics, 97:1 (2020), 6–16 | DOI | MR
[36] Assanova A.T., Tokmurzin Z.S., “A nonlocal multipoint problem for a system of fourth-order partial differential equations”, Eurasian Mathematical Journal, 11:3 (2020), 8–20 | DOI | MR | Zbl
[37] Minglibayeva A.B., Assanova A.T., “An existence of an isolated solution to nonlinear two-point boundary value problem with parameter”, Lobachevskii Journal of Mathematics, 42:3 (2021), 587–597 | DOI | MR | Zbl
[38] Anguraj A., Arjunan M.M., “Existence and uniqueness of mild and classical solutions of impulsive evolution equations”, Electronic Journal of Differential Equations, 2005, no. 111 | MR
[39] Bin L., Xinzhi L., Xiaoxin L., “Robust global exponential stability of uncertain impulsive systems”, Acta Mathematika Scientia, 25:1 (2005), 161–169 | DOI | MR | Zbl
[40] Li M., Han M., “Existence for neutral impulsive functional differential equations with nonlocal conditions”, Indagationes Mathematicae, 20:3 (2009), 435–451 | DOI | MR | Zbl
[41] Ji Sh., Wen Sh., “Nonlocal Cauchy problem for impulsive differential equations in Banach spaces”, International Journal of Nonlinear Science, 10:1 (2010), 88–95 | MR | Zbl
[42] Sharifov Y.A., “Conditions optimality in problems control with systems impulsive differential equations with nonlocal boundary conditions”, Ukrainain Mathematical Journal, 64:6 (2012), 836–847 | MR | Zbl
[43] Ashyralyev A., Sharifov Y.A., “Existence and uniqueness of solutions for nonlinear impulsive differential equations with two-point and integral boundary conditions”, Advances in Difference Equations, 2013:173 (2013) | MR
[44] Gao Zh., Yang L., Liu G., “Existence and uniqueness of solution of impulsive fractional integro-differential equations with nonlocal conditions”, Applied Mathematics, 4 (2013), 859–863 | DOI | MR
[45] Sharifov Ya.A., “Optimal control for systems with impulsive actions under nonlocal boundary conditions”, Russian Mathematics, 57:2 (2013), 65–72 | DOI | MR | Zbl
[46] Agarwal R.P., Benchohra M., Salimani B.A., “Existence results for differential equations with fractional order and impulses”, Memoirs on Differential Equations and Mathematical Physics, 44 (2008), 1–21 | DOI | MR | Zbl
[47] Benchohra M., Salimani B.A., “Existence and uniqueness of solutions to impulsive fractional differential equations”, Electronic Journal of Differential Equations, 2009:10 (2009) | MR
[48] Feckan M., Zhong Y., Wang J., “On the concept and existence of solutions for impulsive fractional differential equations”, Communications in Nonlinear Science and Numerical Simulation, 17:7 (2012), 3050–3060 | DOI | MR | Zbl
[49] Nadeem M., Dabas J., “Impulsive stochastic fractional order integro-differential equations with infinite delay”, Journal of Nonlinear Evolution Equations and Applications, 2017:8 (2019), 109–121
[50] Yuldashev T.K., “On a nonlocal problem for impulsive differential equations with mixed maxima”, Bulletin of KRAUNTs. Physical and Mathematical Sciences, 38:1 (2022), 40–53 | MR | Zbl
[51] Yuldashev T.K., Saburov Kh.Kh., Abduvahobov T.A., “Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equationswith maxima”, Chelyabinsk Physical and Mathematical Journal, 7:1 (2022), 113–122 | MR | Zbl