Asymptotic representation of projector kernel for 2D harmonic oscillator in a strip
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 301-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the asymptotic behavior of the eigenprojector kernel is a key point in obtaining formulas for the regularized traces of bounded perturbations for discrete two-dimensional model differential operators of mathematical physics. In this paper, we consider a 2D harmonic oscillator in a strip. The stationary phase method is used to study the asymptotics of the projector kernel.
Keywords: differential operator, spectrum, operator trace, 2D harmonic oscillator, kernel, projector.
@article{CHFMJ_2022_7_3_a3,
     author = {I. G. Yandybaeva},
     title = {Asymptotic representation of projector kernel for {2D} harmonic oscillator in a strip},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {301--311},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a3/}
}
TY  - JOUR
AU  - I. G. Yandybaeva
TI  - Asymptotic representation of projector kernel for 2D harmonic oscillator in a strip
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 301
EP  - 311
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a3/
LA  - ru
ID  - CHFMJ_2022_7_3_a3
ER  - 
%0 Journal Article
%A I. G. Yandybaeva
%T Asymptotic representation of projector kernel for 2D harmonic oscillator in a strip
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 301-311
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a3/
%G ru
%F CHFMJ_2022_7_3_a3
I. G. Yandybaeva. Asymptotic representation of projector kernel for 2D harmonic oscillator in a strip. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 301-311. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a3/

[1] Sadovnichy V.A., Fazullin Z.Y., Nugaeva I.G., “The spectrum and trace formula for bounded perturbations of differential operators”, Doklady Mathematics, 98:3 (2018), 552–554 | DOI | MR | Zbl

[2] Sadovnichy V.A., Fazullin Z.Y., “A formula for the first regularized trace of a perturbed Laplace-Beltrami operator”, Differential Equations, 37:3 (2001), 430–438 | DOI | MR | Zbl

[3] Sadovnichy V.A., Fazullin Z.Y., Atnagulov A.I., “Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula”, Ufa Mathematical Journal, 8:3 (2016), 22–40 (In Russ.) | MR | Zbl

[4] Fazullin Z.Y., \bf Murtazin Kh.Kh., “Regularized trace of a harmonic oscillator”, Sbornik Mathematics, 192:5–6 (2001), 725–761 | DOI | MR | Zbl

[5] Murtazin Kh.Kh., Fazullin Z.Y., “Spectrum and the trace formula for a two-dimensional Schrödinger operator in a homogeneous magnetic field”, Differential Equations, 45:4 (2009), 564–579 | MR | Zbl

[6] Fazullin Z.Y., \bf Murtazin Kh.Kh., “Spectrum and a trace formula for a compactly supported perturbation of the 2D harmonic oscillator in a strip”, Differential Equations, 55:5 (2019), 677–687 | MR | Zbl

[7] Fedoryuk M.V., Saddle-point method, GIFML, Moscow, 1977 (In Russ.)