Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_3_a3, author = {I. G. Yandybaeva}, title = {Asymptotic representation of projector kernel for {2D} harmonic oscillator in a strip}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {301--311}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a3/} }
TY - JOUR AU - I. G. Yandybaeva TI - Asymptotic representation of projector kernel for 2D harmonic oscillator in a strip JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 301 EP - 311 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a3/ LA - ru ID - CHFMJ_2022_7_3_a3 ER -
I. G. Yandybaeva. Asymptotic representation of projector kernel for 2D harmonic oscillator in a strip. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 301-311. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a3/
[1] Sadovnichy V.A., Fazullin Z.Y., Nugaeva I.G., “The spectrum and trace formula for bounded perturbations of differential operators”, Doklady Mathematics, 98:3 (2018), 552–554 | DOI | MR | Zbl
[2] Sadovnichy V.A., Fazullin Z.Y., “A formula for the first regularized trace of a perturbed Laplace-Beltrami operator”, Differential Equations, 37:3 (2001), 430–438 | DOI | MR | Zbl
[3] Sadovnichy V.A., Fazullin Z.Y., Atnagulov A.I., “Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula”, Ufa Mathematical Journal, 8:3 (2016), 22–40 (In Russ.) | MR | Zbl
[4] Fazullin Z.Y., \bf Murtazin Kh.Kh., “Regularized trace of a harmonic oscillator”, Sbornik Mathematics, 192:5–6 (2001), 725–761 | DOI | MR | Zbl
[5] Murtazin Kh.Kh., Fazullin Z.Y., “Spectrum and the trace formula for a two-dimensional Schrödinger operator in a homogeneous magnetic field”, Differential Equations, 45:4 (2009), 564–579 | MR | Zbl
[6] Fazullin Z.Y., \bf Murtazin Kh.Kh., “Spectrum and a trace formula for a compactly supported perturbation of the 2D harmonic oscillator in a strip”, Differential Equations, 55:5 (2019), 677–687 | MR | Zbl
[7] Fedoryuk M.V., Saddle-point method, GIFML, Moscow, 1977 (In Russ.)