Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_3_a2, author = {M. V. Plekhanova and A. F. Shuklina and G. D. Baybulatova}, title = {Mixed control for degenerate nonlinear equations with fractional derivatives}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {287--300}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a2/} }
TY - JOUR AU - M. V. Plekhanova AU - A. F. Shuklina AU - G. D. Baybulatova TI - Mixed control for degenerate nonlinear equations with fractional derivatives JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 287 EP - 300 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a2/ LA - ru ID - CHFMJ_2022_7_3_a2 ER -
%0 Journal Article %A M. V. Plekhanova %A A. F. Shuklina %A G. D. Baybulatova %T Mixed control for degenerate nonlinear equations with fractional derivatives %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 287-300 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a2/ %G ru %F CHFMJ_2022_7_3_a2
M. V. Plekhanova; A. F. Shuklina; G. D. Baybulatova. Mixed control for degenerate nonlinear equations with fractional derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 287-300. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a2/
[1] Mainardi F., “The time fractional diffusion-wave equations”, Radiophysics and Quantum Electronics, 38 (1995), 13–24 | DOI | MR
[2] Uchaikin V.V., Fractional derivatives method, Artishok, Ulyanovsk, 2008 (In Russ.)
[3] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, Boston, 1974 | MR | Zbl
[4] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York, 1993 | MR | Zbl
[5] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, PhD thesis, University Press Facilities, Eindhoven University of Technology, Eindhoven, 2001 | MR | Zbl
[6] Sobolev S.L., “On a new problem for systems of partial differential equations”, Reports of the USSR Academy of Sciences (In Russ.) | Zbl
[7] Sveshnikov A.G., Alshin A.B., Korpusov M.O., Pletner Yu.D., Linear and nonlinear Sobolev type equations, Fizmatlit, Moscow, 2007 (In Russ.)
[8] Kozhanov A.I., “Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives”, Journal of Mathematical Sciences, 260, no. 3, 2022, 307–314 | DOI | Zbl
[9] Falaleev M.V., “Generalized solutions of degenerate integro-differential equations in Banach spaces”, Results of science and engineering. Contemporary mathematics and its applications. Thematic reviews, 183, 2020, 139–151 (In Russ.)
[10] Wang J. R., Zhou Y., “A class of fractional evolution equations and optimal controls”, Nonlinear Analysis: Real World Applications, 12:1 (2011), 262–272 | DOI | MR | Zbl
[11] Baleanu D., Machado J. A. T., Luo A. C. J., Fractional dynamics and control, Springer, London, New York, Dordrecht, Heidelberg, 2012 | MR | Zbl
[12] Debbouche A., Torres D. F. M., “Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions”, Fractional Calculus and Applied Analysis, 18 (2015), 95–121 | DOI | MR | Zbl
[13] Plekhanova M.V., “Strong solutions to nonlinear degenerate fractional order evolution equations”, Journal of Mathematical Sciences, 230:1 (2018), 146–158 | DOI | MR | Zbl
[14] Plekhanova M. V., Baybulatova G. D., “Semilinear equations in Banach spaces with lower fractional derivatives”, Springer Proceedings in Mathematics and Statistics, 292 (2019), 81–93 | MR | Zbl
[15] Plekhanova M. V., Baybulatova G. D., “Strong solutions of semilinear equations with lower fractional derivatives”, Transmutation Operators and Applications, Trends in Mathematics, eds. V. Kravchenko, S. Sitnik, Cham, Birkhäuser, 2020, 573–585 | DOI | MR | Zbl
[16] Baybulatova G. D., Plekhanova M. V., “An initial problem for a class of weakly degenerate semilinear equations with lower order fractional derivatives”, Bulletin of Irkutsk State University. Series Mathematics, 35 (2021), 34–48 | DOI | MR | Zbl
[17] Plekhanova M.V., Islamova A.F., “Solvability of mixed-type optimal control problems for distributed systems”, Russian Mathematics, 55:7 (2011), 30–39 | DOI | MR | Zbl
[18] Plekhanova M.V., “Start control problems for fractional evolution equations”, Chelyabinsk Physical and Mathematical Journal, 1:3 (2016), 16–37 | MR
[19] Plekhanova M. V., “Mixed control problem for the linearized quasi-stationary phase field system of equations”, Materials Science Forum, 845 (2016), 170–173 | DOI
[20] Shuklina A.F., Plekhanova M.V., “Mixed control problems for the Sobolev system”, Chelyabinsk Physical and Mathematical Journal, 1:2 (2016), 78–84 (In Russ.) | MR | Zbl
[21] Gerasimov A.N., “Generalization of linear deformation laws and their applications to problems of internal friction”, Applied mathematics and mechanics, 12 (1948), 529–539 (In Russ.)
[22] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003 | MR | Zbl
[23] Plekhanova M. V., Baybulatova G. D., “On strong solutions for a class of semilinear fractional degenerate evolution equations with lower fractional derivatives”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11810–11819 | DOI | MR | Zbl
[24] Plekhanova M.V., “Solvability of control problems for degenerate evolution equations of fractional order”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 53–65 (In Russ.) | Zbl
[25] Fursikov A.V., Optimal Control of Distributed Systems. Theory and Applications, American Mathematical Society, 1999 (In Russ.)
[26] Sobolev S.L., “On a new problem of mathematical physics”, News of USSR Academy of Sciences. Series mathematical, 18 (1954), 3–50 (In Russ.) | MR | Zbl
[27] Gordievskikh D.M., Fedorov V.E., “Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time”, Bulletin of Irkutsk State University. Series Mathematics, 12 (2015), 12–22 (In Russ.) | Zbl
[28] Hassard B.D., Kazarinoff N.D., Wan U.-H., Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, New York, 1981 | MR | Zbl