Mixed control for degenerate nonlinear equations with fractional derivatives
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 287-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of problems of mixed control of systems is considered, the state of which is described by equations in Banach spaces that are not solvable with respect to the Gerasimov — Caputo highest fractional derivative and depend nonlinearly on lower-order fractional derivatives. The condition of 0-boundedness of a pair of operators in the linear part of the equation is used, which allows one to set the Schwalter — Sidorov initial conditions for the differential equation under study. The nonlinear operator is assumed to depend only on the elements of the subspace without degeneration. The objective functional in the mixed control problem is assumed to be convex, lower semicontinuous, and coercive, while the set of admissible controls is assumed to be non-empty, convex, and closed. A theorem on the existence of an optimal control is obtained. Abstract results are used in the study of the mixed control problem for the modified Sobolev equation of fractional order in time.
Keywords: optimal control, mixed control, fractional order equation, Gerasimov – Caputo derivative, nonlinear evolution equation, degenerate evolution equation.
@article{CHFMJ_2022_7_3_a2,
     author = {M. V. Plekhanova and A. F. Shuklina and G. D. Baybulatova},
     title = {Mixed control for degenerate nonlinear equations with fractional derivatives},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {287--300},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a2/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - A. F. Shuklina
AU  - G. D. Baybulatova
TI  - Mixed control for degenerate nonlinear equations with fractional derivatives
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 287
EP  - 300
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a2/
LA  - ru
ID  - CHFMJ_2022_7_3_a2
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A A. F. Shuklina
%A G. D. Baybulatova
%T Mixed control for degenerate nonlinear equations with fractional derivatives
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 287-300
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a2/
%G ru
%F CHFMJ_2022_7_3_a2
M. V. Plekhanova; A. F. Shuklina; G. D. Baybulatova. Mixed control for degenerate nonlinear equations with fractional derivatives. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 287-300. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a2/

[1] Mainardi F., “The time fractional diffusion-wave equations”, Radiophysics and Quantum Electronics, 38 (1995), 13–24 | DOI | MR

[2] Uchaikin V.V., Fractional derivatives method, Artishok, Ulyanovsk, 2008 (In Russ.)

[3] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, Boston, 1974 | MR | Zbl

[4] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York, 1993 | MR | Zbl

[5] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, PhD thesis, University Press Facilities, Eindhoven University of Technology, Eindhoven, 2001 | MR | Zbl

[6] Sobolev S.L., “On a new problem for systems of partial differential equations”, Reports of the USSR Academy of Sciences (In Russ.) | Zbl

[7] Sveshnikov A.G., Alshin A.B., Korpusov M.O., Pletner Yu.D., Linear and nonlinear Sobolev type equations, Fizmatlit, Moscow, 2007 (In Russ.)

[8] Kozhanov A.I., “Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives”, Journal of Mathematical Sciences, 260, no. 3, 2022, 307–314 | DOI | Zbl

[9] Falaleev M.V., “Generalized solutions of degenerate integro-differential equations in Banach spaces”, Results of science and engineering. Contemporary mathematics and its applications. Thematic reviews, 183, 2020, 139–151 (In Russ.)

[10] Wang J. R., Zhou Y., “A class of fractional evolution equations and optimal controls”, Nonlinear Analysis: Real World Applications, 12:1 (2011), 262–272 | DOI | MR | Zbl

[11] Baleanu D., Machado J. A. T., Luo A. C. J., Fractional dynamics and control, Springer, London, New York, Dordrecht, Heidelberg, 2012 | MR | Zbl

[12] Debbouche A., Torres D. F. M., “Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions”, Fractional Calculus and Applied Analysis, 18 (2015), 95–121 | DOI | MR | Zbl

[13] Plekhanova M.V., “Strong solutions to nonlinear degenerate fractional order evolution equations”, Journal of Mathematical Sciences, 230:1 (2018), 146–158 | DOI | MR | Zbl

[14] Plekhanova M. V., Baybulatova G. D., “Semilinear equations in Banach spaces with lower fractional derivatives”, Springer Proceedings in Mathematics and Statistics, 292 (2019), 81–93 | MR | Zbl

[15] Plekhanova M. V., Baybulatova G. D., “Strong solutions of semilinear equations with lower fractional derivatives”, Transmutation Operators and Applications, Trends in Mathematics, eds. V. Kravchenko, S. Sitnik, Cham, Birkhäuser, 2020, 573–585 | DOI | MR | Zbl

[16] Baybulatova G. D., Plekhanova M. V., “An initial problem for a class of weakly degenerate semilinear equations with lower order fractional derivatives”, Bulletin of Irkutsk State University. Series Mathematics, 35 (2021), 34–48 | DOI | MR | Zbl

[17] Plekhanova M.V., Islamova A.F., “Solvability of mixed-type optimal control problems for distributed systems”, Russian Mathematics, 55:7 (2011), 30–39 | DOI | MR | Zbl

[18] Plekhanova M.V., “Start control problems for fractional evolution equations”, Chelyabinsk Physical and Mathematical Journal, 1:3 (2016), 16–37 | MR

[19] Plekhanova M. V., “Mixed control problem for the linearized quasi-stationary phase field system of equations”, Materials Science Forum, 845 (2016), 170–173 | DOI

[20] Shuklina A.F., Plekhanova M.V., “Mixed control problems for the Sobolev system”, Chelyabinsk Physical and Mathematical Journal, 1:2 (2016), 78–84 (In Russ.) | MR | Zbl

[21] Gerasimov A.N., “Generalization of linear deformation laws and their applications to problems of internal friction”, Applied mathematics and mechanics, 12 (1948), 529–539 (In Russ.)

[22] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003 | MR | Zbl

[23] Plekhanova M. V., Baybulatova G. D., “On strong solutions for a class of semilinear fractional degenerate evolution equations with lower fractional derivatives”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11810–11819 | DOI | MR | Zbl

[24] Plekhanova M.V., “Solvability of control problems for degenerate evolution equations of fractional order”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 53–65 (In Russ.) | Zbl

[25] Fursikov A.V., Optimal Control of Distributed Systems. Theory and Applications, American Mathematical Society, 1999 (In Russ.)

[26] Sobolev S.L., “On a new problem of mathematical physics”, News of USSR Academy of Sciences. Series mathematical, 18 (1954), 3–50 (In Russ.) | MR | Zbl

[27] Gordievskikh D.M., Fedorov V.E., “Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time”, Bulletin of Irkutsk State University. Series Mathematics, 12 (2015), 12–22 (In Russ.) | Zbl

[28] Hassard B.D., Kazarinoff N.D., Wan U.-H., Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, New York, 1981 | MR | Zbl