Structural transformations of graphite during dispersion
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 374-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

The change in the fine structure of graphite dispersed in a planetary mill for up to 2700 minutes has been studied by the method of X-ray structural analysis. The profiles of the asymmetric X-ray diffraction 002 peak of graphite samples were investigated using a program that allows one to isolate overlapping peaks with different gravity centers, intensities, and widths. The separation was carried out into the minimum number of components that adequately describe the experimentally observed asymmetric peak. It is shown that asymmetric peak consist of a superposition of symmetric peaks of increasing width and corresponding to the values of interlayer distances d$_{002}$ in the range from $\sim$3.37 to $\sim$3.55/3.68 Å. The observed dependence of the component composition on the duration of dispersion suggests that the process of the transition of graphite into a disordered carbon material, apparently, develops through a number of metastable states.
Keywords: X-ray diffraction analysis, dispersion, graphite, diffraction peak profile analysis.
@article{CHFMJ_2022_7_3_a10,
     author = {A. G. Fazlitdinova and V. A. Tyumentsev},
     title = {Structural transformations of graphite during dispersion},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {374--383},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a10/}
}
TY  - JOUR
AU  - A. G. Fazlitdinova
AU  - V. A. Tyumentsev
TI  - Structural transformations of graphite during dispersion
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 374
EP  - 383
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a10/
LA  - ru
ID  - CHFMJ_2022_7_3_a10
ER  - 
%0 Journal Article
%A A. G. Fazlitdinova
%A V. A. Tyumentsev
%T Structural transformations of graphite during dispersion
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 374-383
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a10/
%G ru
%F CHFMJ_2022_7_3_a10
A. G. Fazlitdinova; V. A. Tyumentsev. Structural transformations of graphite during dispersion. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 3, pp. 374-383. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_3_a10/

[1] Tyumentsev V. A., Belenkov E. A., Shveikin G. P., Podkopaev S. A., “The effects of sulphur and other impurities on carbon-graphite transition”, Carbon, 36:7/8 (1998), 845–853 | DOI

[2] Liu F., Wang H., Xue L., Fan L., Zhu Z., “Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization”, Journal of Materials Science, 43:10 (2008), 4316–4322 | DOI

[3] Zhao J., Yang L., Li F., Yu R., Jin C., “Structural evolution in the graphitization process of activated carbon by high-pressure sintering”, Carbon, 47:3 (2009), 744–751 | DOI

[4] Wen Y., Lu Y., Xiao H., Qin X., “Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers: Mechanism and mechanical properties”, Materials and Design, 36 (2012), 728–734 | DOI

[5] Samoilov V. M., Verbets D. B., Bubnenkov I. A., Steparyova N. N., Nikolaeva A. V., Danilov E. A., Ponomareva D. V., Timoshchuk E. I., “Influence of graphitization conditions at 3000$^\circ$ on structural and mechanical properties of high-modulus polyacrylonitrile-based carbon fibers”, Inorganic Materials: Applied Research, 9:5 (2018), 890–899 | DOI | MR

[6] Kawamura K., Bragg R. H., “Graphitization of pitch coke: changes in mean interlayer spacing, strain and weights”, Carbon, 24:3 (1986), 301–309 | DOI

[7] Lachter J., Bragg R. H., “Interstitials in graphite and disordered carbons”, Physical Review B., 33:12 (1986), 8903–8905 | DOI

[8] Tadjani M., Lechter J., Kabret T. S., Bragg R. H., “Structural disorder induced in graphite by grinding”, Carbon, 24 (1986), 447–449 | DOI

[9] Aladekomo J. B., Bragg R. H., “Structural transformations induced in graphite by grinding: Analysis of 002 X-ray diffraction line profiles”, Carbon, 28 (1990), 897–906 | DOI

[10] Salver-Dismaa F., Tarascona J.-M., Clinardb C., Rouzaudb J.-N., “Transmission electron microscopy studies on carbon materials prepared by mechanical milling”, Carbon, 37:12 (1999), 1942–1959 | DOI

[11] Ong T. S., Yang H., “Effect of atmosphere on the mechanical milling of natural graphite”, Carbon, 38:6 (2000), 2077–2085 | DOI

[12] Vazquez-Santos M. B., Geissler E., Laszlo K., Rouzaud J.-N., Martinez-Alonso A., Tascon J. M. D., “Comparative XRD, Raman, and TEM Study on Graphitization of PBO-Derived Carbon Fibers”, The Journal of Physical Chemistry C, 116 (2012), 257–268 | DOI

[13] Churikov V.V., Tyumentsev V.A., Podkopaev S.A., “Effect of boron additive on the formation of the carbon fiber structure”, Russian Journal of Applied Chemistry, 83 (2010), 989–992 | DOI

[14] Tyumentsev V.A., Fazlitdinova A.G., “Relation between the synthesis conditions and the fine structure of fiber carbon”, Technical Physics, 61 (2016), 380–387 | DOI

[15] Tyumentsev V.A., Fazlitdinova A.G., “Effect of temperature of thermomechanical processing on the heterogeneous structure of carbon fiber”, Technical Physics, 64 (2019), 1767–1773 | DOI