Identification of a boundary condition in the heat and mass transfer problems
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 234-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider well-posedness in Sobolev spaces of inverse problems of recovering a function occurring in the Robin boundary condition in the parabolic case. The existence and uniqueness theorem are exhibited. The proof relies on a priori estimates obtained and the method of continuation in a parameter. The method is constructive and the approach allows to develop numerical methods for solving the problem.
Keywords: inverse problem, heat and mass transfer, parabolic equation, Robin boundary condition.
@article{CHFMJ_2022_7_2_a6,
     author = {S. G. Pyatkov and V. A. Baranchuk},
     title = {Identification of a boundary condition in the heat and mass transfer problems},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {234--253},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a6/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - V. A. Baranchuk
TI  - Identification of a boundary condition in the heat and mass transfer problems
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 234
EP  - 253
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a6/
LA  - ru
ID  - CHFMJ_2022_7_2_a6
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A V. A. Baranchuk
%T Identification of a boundary condition in the heat and mass transfer problems
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 234-253
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a6/
%G ru
%F CHFMJ_2022_7_2_a6
S. G. Pyatkov; V. A. Baranchuk. Identification of a boundary condition in the heat and mass transfer problems. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 234-253. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a6/

[1] Borodulin A.I., Desyatkov B.D., Makhov G.A., Sarmanaev S.R., “Assessment of methane emission from measured concentrations in the atmospheric surface layer”, Russian Meteorology and Hydrology, 1997, no. 1, 49–55

[2] Tkachenko V.N., Mathematical modeling, identification and control of technological processes of heat treatment of materials, Naukova Dumka Publ., Kiev, 2008 (In Russ.) | MR

[3] Alifanov O.M., Artyukhin E.A., Nenarokomov A.V., Inverse problems in the study of complex heat transfer, Yanus-K Publ., Moscow, 2009 (In Russ.)

[4] Glagolev M. V., Sabrekov A. F., “Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling”, Mathematical Biology and Bioinformatics, 7:1 (2012), 81–101 | DOI | MR

[5] Sabrekov A.F., Glagolev M.V., Terentyeva I.E., “Determination of the specific flux of methane from soil using inverse modeling based on conjugate equations”, Reports of the International Conference “Mathematical Biology and Bioinformatics”., v. 7, ed. V.D. Lakhno, IMPB RAS, Pushchino, 2018, Article no. e94 (In Russ.)

[6] Abboudi S., Artioukhine E., “Simultaneous estimation of two boundary conditions in a two-dimensional heat conduction problem”, Proceeding of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, 5th International Conference on Inverse Problems in Engineering: Theory and Practice (Cambridge, UK, 11–15th July 2005), 2005, 9

[7] Onyango T. M., Ingham D. B., Lesnic D., “Restoring boundary conditions in heat conduction”, Journal of Engineering Mathematics, 62 (2008), 85–101 | DOI | MR | Zbl

[8] Egger H., Heng Y., Marquardt W., Mhamdi A., Efficient solution of a three-dimensional inverse heat conduction problem in pool boiling. Aachen Institute for Advanced Study in Computational Engineering Science, Preprint: AICES-2009-4. 06/February/2009 | MR

[9] Alghamdi A. S. A., “Inverse estimation of boundary heat flux for heat conduction model”, Journal of King Saud University — Engineering Sciences, 21:1 (2010), 73–95

[10] Fernandes A. P., de Sousa P. F. B., Borges V. L., Guimaraes G., “Use of 3D-transient analytical solution based on Green's function to reduce computational time in inverse heat conduction problems”, Applied Mathematical Modelling, 34 (2010), 4040–4049 | DOI | Zbl

[11] Kolesnik S.A., Kuznetsova E.L., “The way to reconstruct the heat fluxes by solving the inverse boundary heat exchange problem for the anisotropic stripe”, Thermal Engineering, 2011, no. 6, 151–158

[12] Hussein M. S., Lesnic D., Ivanchov M. I., “Simultaneous determination of time-dependent coefficients in the heat equation”, Computers and Mathematics with Applications, 67 (2014), 1065–1091 | DOI | MR | Zbl

[13] Matsevity Yu.M., Safonov N.A., Ganchin V.V., “To solving of nonlinear boundary-value inverse heat conduction problems”, Problems of mechanical engineering, 19:1 (2016), 28–36 (In Russ.)

[14] Woodbury K. A., Beck J. V., Najafi H., “Filter solution of inverse heat conduction problem using measured temperature history as remote boundary condition”, International Journal of Heat and Mass Transfer, 72 (2014), 139–147 | DOI

[15] Knupp D. C., Abreu L. A. S., “Explicit boundary heat flux reconstruction employing temperature measurements regularized via truncated eigenfunction expansions”, International Communications in Heat and Mass Transfer, 78 (2016), 241–252 | DOI

[16] Wang S., Zhang L., Sun X., Jia H., “Solution to two-dimensional steady inverse heat transfer problems with interior heat source based on the conjugate gradient method”, Mathematical Problems in Engineering, 2017 (2017), Article ID 2861342 | MR

[17] Colaco M. J., Orlande H. R. B., “Inverse natural convection problem of simultaneous estimation of two boundary heat fluxes in irregular cavities”, International Journal of Heat and Mass Transfer, 47:6 (2004), 1201–1215 | DOI | Zbl

[18] Huang C., Ju T., “An inverse problem of simultaneously estimating contact conductance and heat transfer coefficient of exhaust gases between engine's exhaust valve and seat”, International Journal for Numerical Methods in Engineering, 38:5 (1995), 735–754 | DOI

[19] Loulou T., Scott E., “An inverse heat conduction problem with heat flux measurements”, International Journal for Numerical Methods in Engineering, 67:11 (2006), 1587–1616 | DOI | MR | Zbl

[20] Abreu L. A. S., Colaco M. J., Alves C. J. S., Orlande H. R. B., Kolehmainen V., Kaipio J., “A comparison of two inverse problem techniques for the identification of contact failures in multi-layered composites”, 22nd International Congress of Mechanical Engineering (COBEM 2013) (November 3–7, 2013), 2013, 5422–5432

[21] Hao D. N., Thanh P. X., Lesnic D., “Determination of the heat transfer coefficients in transient heat conduction”, Inverse Problems, 29 (2013), Article ID 095020 | DOI | MR

[22] Matsevity Yu.M., Kostikov A.O., Safonov N.A., Ganchin V.V., “To solving of non-stationary nonlinear inverse boundary-value heat conduction problems”, Problems of mechanical engineering, 20:4 (2017), 15–23 (In Russ.)

[23] Yang L. L., Sun B., Sun X., “Inversion of thermal conductivity in two-dimensional unsteady-state heat transfer system based on finite difference method and artificial bee colony”, Applied Sciences, 9:22 (2019), 4824 | DOI

[24] Zhuo L., Lesnic D., “Reconstruction of the heat transfer coefficient at the interface of a bi-material”, Inverse Problems in Science and Engineering, 28:3 (2020), 374–401 | DOI | MR | Zbl

[25] Kostin A.B., Prilepko A.I., “On some problems of restoring the boundary condition for a parabolic equation. II.”, Differential Equations, 32:11 (1996), 1515–1525 | MR | Zbl

[26] Kostin A.B., Prilepko A.I., “On some problems of restoring the boundary condition for a parabolic equation. I.”, Differential Equations, 32:1 (1996), 113–121 | MR | Zbl

[27] Triebel H., Interpolation theory. Functional spaces. Differential Operators, Mir, Moscow, 1980 (In Russ.)

[28] Denk R., Hieber M., Prüss J., “Optimal $L_p$-$L_q$-estimates for parabolic boundary value problems with inhomogeneous data”, Mathematische Zeitschrift, 257 (2007), 193–224 | DOI | MR | Zbl

[29] Ladyzhenskaya O.A., Uraltseva N.N., Solonnikov V.A., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, 1968 (In Russ.) | MR

[30] Belonogov V.A., Pyatkov S.G., “On the solvability of conjugation problems with conditions of imperfect contact type”, Russian Mathematics, 64:7 (2020), 13–26 | DOI | MR | Zbl

[31] Verzhbitsky M.A., Pyatkov S.G., “On some inverse problems on the determination of boundary regimes”, Mathematical Notes of NEFU, 23:2 (2016), 3–18 | Zbl

[32] Mikhailov V.P., Partial Differential Equations, Nauka Publ., Moscow, 1976 (In Russ.)

[33] Grisvard P., “Équations différentielles abstraites”, Annales Scientifiques De l'École Normale Superieure, 2:3, $4^{e}$ séries (1969), 311–395 | DOI | MR | Zbl

[34] Nikolsky S.M., Approximation of functions of several variables and embedding theorems, Nauka Publ., Moscow, 1977 (In Russ.) | MR

[35] Amann H., “Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications”, Mathematische Nachrichten, 186 (1997), 5–56 | DOI | MR | Zbl

[36] Lieberman G. M., Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapure, 1996 | MR | Zbl

[37] Amann H., “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glasnik matematicki, 35:1 (2000), 161–177 | MR | Zbl