Identification of a boundary condition in the heat and mass transfer problems
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 234-253

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider well-posedness in Sobolev spaces of inverse problems of recovering a function occurring in the Robin boundary condition in the parabolic case. The existence and uniqueness theorem are exhibited. The proof relies on a priori estimates obtained and the method of continuation in a parameter. The method is constructive and the approach allows to develop numerical methods for solving the problem.
Keywords: inverse problem, heat and mass transfer, parabolic equation, Robin boundary condition.
@article{CHFMJ_2022_7_2_a6,
     author = {S. G. Pyatkov and V. A. Baranchuk},
     title = {Identification of a boundary condition in the heat and mass transfer problems},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {234--253},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a6/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - V. A. Baranchuk
TI  - Identification of a boundary condition in the heat and mass transfer problems
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 234
EP  - 253
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a6/
LA  - ru
ID  - CHFMJ_2022_7_2_a6
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A V. A. Baranchuk
%T Identification of a boundary condition in the heat and mass transfer problems
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 234-253
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a6/
%G ru
%F CHFMJ_2022_7_2_a6
S. G. Pyatkov; V. A. Baranchuk. Identification of a boundary condition in the heat and mass transfer problems. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 234-253. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a6/