Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_2_a4, author = {Yu. L. Nosov}, title = {Topological indices of maximal outerplane graphs with two simplicial vertices}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {181--208}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a4/} }
TY - JOUR AU - Yu. L. Nosov TI - Topological indices of maximal outerplane graphs with two simplicial vertices JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 181 EP - 208 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a4/ LA - ru ID - CHFMJ_2022_7_2_a4 ER -
Yu. L. Nosov. Topological indices of maximal outerplane graphs with two simplicial vertices. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 2, pp. 181-208. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_2_a4/
[1] Harary F., Graph Theory, Reading, Addison-Wesley, 1969 | MR | Zbl
[2] Diudea M. V., Gutman I., Jantschi L., Molecular Topology, Nova, Huntington, New York, 2001
[3] Wiener H., “Structural determination of paraffin boiling points”, Journal of the American Chemical Society, 69:1 (1947), 17–20 | DOI
[4] Todeschini R., Consonni V., Molecular Descriptors for Chemoinformatics, v. I II, Wiley, Weinheim, 2009
[5] Polien — Polyene, data obrascheniya : 05.11.2021 https://wikichi.ru/wiki/Polyene
[6] Moss G. P., “Basic terminology of stereochemistry (IUPAC Recommendations 1996)”, Pure and Applied Chemistry, 68:12 (1996), 2193–2222 | DOI
[7] Craig N. C., Demaison J., Groner P., Rudolph H. D., “Electron delocalization in polyenes: A semiexperimental equilibrium structure for (3E) 1,3,5-hexatriene and theoretical structures for (3Z,5Z), (3E,5E), and (3E,5Z) 1,3,5,7-octatetraene”, The Journal of Physical Chemistry A, 119:1 (2015), 195–204 | DOI
[8] Panchenko Y. N., De Mare G. R., Aroca R. Bock C. W., “All-trans- and t,T,t,C,t,T,t-deca-1,3,5,7,9-pentaenes: Ab initio structures, vibrational analyses, and some regularities in the series of related molecules”, Structural Chemistry, 11:2–3 (2000), 195–204
[9] Dobrynin A. A., Entringer R., Gutman I., “Wiener index of trees: Theory and applications”, Acta Applicandae Mathematicae, 66:3 (2001), 211–249 | DOI | MR | Zbl
[10] Cyvin S. J., Lloyd E. K, Cyvin B. N., Brunvoll J., “Chemical relevance of a pure combinatorial problem: Isomers of conjugated polyenes”, Structural Chemistry, 7:3 (1996), 183–186 | DOI
[11] Markov M., “On the vertex separation of maximal outerplanar graphs”, Serdica Journal of Computing, 154:5 (2008), 207–238 | MR
[12] Uznanski Dan., Grid, From MathWorld — A Wolfram Web Resource, created by Eric W. ((data obrascheniya : 05.11.2021)) https://mathworld.wolfram.com/Grid.html
[13] Ponarin Ya.P., Elementary geometry, v. Vol. 1, Planimetry, plane transformations, House of Moscow Center for Continuous Mathematical Education, Moscow, 2004 (In Russ.)
[14] Nosov Yu.L., “Maximal outerplane graphs with two simplicial vertices”, Applied Discrete Mathematics, 29:3 (2015), 95–109 (In Russ.) | Zbl
[15] Nosov Yu.L., “Extremal by Wiener index maximal outerplane graphs with two simplicial vertices”, Chelyabinsk Physical and Mathematical Journal, 4:3 (2019), 285–322 (In Russ.) | MR | Zbl
[16] Draper N.R, Smith H., Applied Regression Analysis, Wiley Sons, New York, Chichester, Brisbane, Toronto, Singapor, 2009
[17] Bogdanov B., Nikolić S., Trinajstić N., “On the three-dimensional wiener number”, Journal of Mathematical Chemistry, 3:7 (1989), 299–309 | DOI
[18] CRC Standard Mathematical Tables and Formulas, 33rd ed., Chapman and Hall/CRC,, Boca Raton, London, New York, 2018
[19] Asratian A. S., Oksimets N., “Graphs with Hamiltonian balls”, Australian Journal of Combinatorics, 17:4 (1998), 185–198 | MR | Zbl
[20] Konstantinova E. V., Vidyuk M. V., “Discriminating tests of information and topological indices. Animals and trees”, Journal of Chemical Information and Computer Sciences, 43:6 (2003), 1860–1871 | DOI
[21] Balaban A. T., Ionescu-Pallas N., Balaban T. S., “Asymptotic values of topological indices $J$ and $J'$ (Average distance sum connectivities) for infinite acyclic graphs”, MATCH Communications in Mathematical and in Computer Chemistry, 17 (1985), 121–146 | MR | Zbl
[22] Hexagonal lattice, (accessed: 25.11.2021) (In Russ.) https://google-nfo.org/ 1117811/1/shestiugolnaya-reshetka.html
[23] Wolfram Mathematica, (accessed: 25.11.2021) (In Russ.) https://www.wolfram.com/ mathematica
[24] Lewars E. G. \, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, Springer, Dordrecht, Heidelberg, London, New York, 2011
[25] Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., Hutchison G. R., “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform”, Journal of Cheminformatics, 4:17 (2012), 1–17
[26] Halgren T. A., “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94”, Journal of Computational Chemistry, 1996
[27] Granovsky A. A., Firefly v.8. , (data obrascheniya : 08.11.2021) http://classic.chem.msu.su/ gran/firefly/index.html
[28] Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery J. A., “General atomic and molecular electronic structure system”, Journal of Computational Chemistry, 14:11 (1993), 1347–1363 | DOI
[29] Becke A. D., “Density-functional thermochemistry. III. The role of exact exchange”, The Journal of Chemical Physics, 98:7 (1993), 5648–5652 | DOI
[30] Grimme S., Ehrlich S., Goerigk L., “Effect of the damping function in dispersion corrected density functional theory”, Journal of Computational Chemistry, 32:7 (2011), 1456–1465 | DOI
[31] Weigend F., Ahlrichs R., “Balanced basis sets of split valence{,} triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy”, Physical Chemistry Chemical Physics, 7:18 (2005), 3297–3305 | DOI
[32] Neese F., “The ORCA program system”, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2:1 (2005), 73–78 | DOI
[33] Zhurko G. A., Chemcraft — graphical program for visualization of quantum chemistry computations, Ivanovo, Russia, 2005 ((accessed : 15.04.2021)) URL: https://chemcraftprog.com | Zbl
[34] Furtula B., Lekishvili G., Gutman I., “A graph theoretical approach to cis/trans isomerism”, Journal of the Serbian Chemical Society, 79:7 (2014), 805–813 | DOI