Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2022_7_1_a8, author = {T. K. Yuldashev and Kh. Kh. Saburov and T. A. Abduvahobov}, title = {Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations\\ with maxima}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {113--122}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a8/} }
TY - JOUR AU - T. K. Yuldashev AU - Kh. Kh. Saburov AU - T. A. Abduvahobov TI - Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations\\ with maxima JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2022 SP - 113 EP - 122 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a8/ LA - en ID - CHFMJ_2022_7_1_a8 ER -
%0 Journal Article %A T. K. Yuldashev %A Kh. Kh. Saburov %A T. A. Abduvahobov %T Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations\\ with maxima %J Čelâbinskij fiziko-matematičeskij žurnal %D 2022 %P 113-122 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a8/ %G en %F CHFMJ_2022_7_1_a8
T. K. Yuldashev; Kh. Kh. Saburov; T. A. Abduvahobov. Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations\\ with maxima. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 113-122. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a8/
[1] Halanay A., Wexler D., Teoria calitativa a sistemelor cu impulsuri, Editura Academiei Republicii Socialiste Romania, Bucuresti, 1968 | MR | Zbl
[2] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of impulsive differential equations, World Scientific, Singapore, 1989 | MR | Zbl
[3] Samoilenko A.M., Perestyk N.A., Impulsive differential equations, World Sci., Singapore, 1995 | MR | Zbl
[4] Benchohra M., Henderson J., Ntouyas S.K., Impulsive differential equations and inclusions. Contemporary mathematics and its application, Hindawi Publishing Corporation, New York, 2006 | MR
[5] Boichuk A.A., Samoilenko A.M., Generalized inverse operators and Fredholm boundary-value problems, 2nd ed., Walter de Gruyter GmbH, Berlin, Boston, 2016 | MR
[6] Yuldashev T.K., “Nonlocal mixed-value problem for a Boussinesq-type integrodifferential equation with degenerate kernel”, Ukrainian Mathematical Journal, 68:8 (2016), 1278–1296 | DOI | MR
[7] Yuldashev T.K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii Journal of Mathematics, 38:3 (2017), 547–553 | DOI | MR | Zbl
[8] Yuldashev T.K., “Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel”, Differential Equations, 54:12 (2018), 1646–1653 | DOI | MR | Zbl
[9] Assanova A., “An integral-boundary value problem for a partial differential equation of second order”, Turkish Journal of Mathematics, 43:4 (2019), 1967–1978 | DOI | MR | Zbl
[10] Yuldashev T.K., “Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation”, Lobachevskii Journal of Mathematics, 40:12 (2019), 2116–2123 | DOI | MR | Zbl
[11] Yuldashev T.K., “On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter”, Lobachevskii Journal of Mathematics, 40:2 (2019), 230–239 | DOI | MR | Zbl
[12] Yuldashev T.K., “On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel”, Computational Mathematics and Mathematical Physics, 59:2 (2019), 241–252 | DOI | MR | Zbl
[13] Assanova A.T., Imanchiyev A.E., Kadirbayeva Zh.M., “A nonlocal problem for loaded partial differential equations of fourth order”, Bulletin of the Karaganda University. Mathematics, 97:1 (2020), 6–16 | DOI | MR
[14] Assanova A.T., Tokmurzin Z.S., “A nonlocal multipoint problem for a system of fourth-order partial differential equations”, Eurasian Mathematical Journal, 11:3 (2020), 8–20 | DOI | MR | Zbl
[15] Yuldashev T.K., “Nonlinear optimal control of thermal processes in a nonlinear inverse problem”, Lobachevskii Journal of Mathematics, 41:1 (2020), 124–136 | DOI | MR | Zbl
[16] Assanova A.T., “On the solvability of nonlocal problem for the system of Sobolev-type differential equations with integral condition”, Georgian Mathematical Journal, 28:1 (2021), 49–57 | DOI | MR | Zbl
[17] Minglibayeva A.B., Assanova A.T., “An existence of an isolated solution to nonlinear two-point boundary value problem with parameter”, Lobachevskii Journal of Mathematics, 42:3 (2021), 587–597 | DOI | MR | Zbl
[18] Yuldashev T.K., “On a Volterra type fractional integro-differential equation with degenerate kernel”, AIP Conference Proceedings, 2365:020016 (2021), 12 pp.
[19] Anguraj A., Arjunan M.M., “Existence and uniqueness of mild and classical solutions of impulsive evolution equations”, Electonic Journal of Differential Equations, 111 (2005), 1–8 | MR
[20] Bin L., Xinzhi L., Xiaoxin L., “Robust global exponential stability of uncertain impulsive systems”, Acta Mathematika Scientia, 25:1 (2005), 161–169 | DOI | MR | Zbl
[21] Li M., Han M., “Existence for neutral impulsive functional differential equations with nonlocal conditions”, Indagationes Mathematicae, 20:3 (2009), 435–451 | DOI | MR | Zbl
[22] Ji Sh., Wen Sh., “Nonlocal Cauchy problem for impulsive differential equations in Banach spaces”, International Journal of Nonlinear Science, 10:1 (2010), 88–95 | MR | Zbl
[23] Sharifov Y.A., “Conditions optimality in problems control with systems impulsive differential equations with nonlocal boundary conditions”, Ukrainain Mathematical Journal, 64:6 (2012), 836–847 | MR | Zbl
[24] Ashyralyev A., Sharifov Y.A., “Existence and uniqueness of solutions for nonlinear impulsive differential equations with two-point and integral boundary conditions”, Advances in Difference Equations, 2013 (2013), 173 | DOI | MR | Zbl
[25] Gao Zh., Yang L., Liu G., “Existence and uniqueness of solution of impulsive fractional integro-differential equations with nonlocal conditions”, Applied Mathematics, 4 (2013), 859–863 | DOI | MR
[26] Sharifov Ya.A., “Optimal control for systems with impulsive actions under nonlocal boundary conditions”, Russian Mathematics, 57:2 (2013), 65–72 | DOI | MR | Zbl
[27] Mardanov M.J., Sharifov Ya.A., Molaei Habib H., “Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions”, Electronic Journal of Differential Equations, 2014, no. 259, 1–8 | MR
[28] Yuldashev T.K., Ovsyanikov S.M., “An approximate solution of a system of nonlinear integral equations with a delay argument and an approximate calculation of the quality functional”, Journal of the Middle Volga Mathematical Society, 17:2 (2015), 85–95 (In Russ.) | Zbl
[29] Yuldashev T.K., “Limit value problem for a system of integro-differential equations with two mixed maxima”, Bulletin of Samara State Technical University. Series: Physical and Mathematical Sciences, 1:16 (2008), 15–22 (In Russ.) | MR | Zbl
[30] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl
[31] Mainardi F., “Fractional calculus: some basic problems in continuum and statistical mechanics”, Fractals and Fractional Calculus in Continuum Mechanics, eds. Carpinteri A., Mainardi F., Springer, Wien, 1997 | MR
[32] Area I., Batarfi H., Losada J., Nieto J.J., Shammakh W.M., Torres A., “On a fractional order Ebola epidemic model”, Advances in Differerence Equations, 2015, no. 278 | MR
[33] Hussain A., Baleanu D., Adeel M., “Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model”, Advances in Differerence Equations, 2020, no. 384 | MR
[34] Ullah S., Khan M.A., Farooq M., Hammouch Z., Baleanu D., “A fractional model for the dynamics of tuberculosis infection using Caputo — Fabrizio derivative”, Discrete and Continuous Dynamical Systems. Series S, 13:3 (2020), 975–993 | DOI | MR | Zbl
[35] Handbook of Fractional Calculus with Applications, v. 1–8, eds. Tenreiro Machado J.A., Walter de Gruyter GmbH,, Berlin, Boston, 2019
[36] Kumar D., Baleanu D., “Editorial: Fractional calculus and its applications in physics”, Frontiers in Physics, 7:6 (2019)
[37] Sun H., Chang A., Zhang Y., Chen W., “A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications”, Fractional Calculus and Applied Analysis, 22:1 (2019), 27–59 | DOI | MR | Zbl
[38] Patnaik S., Hollkamp J.P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A., 476:2234 (2020), 1–32 | MR
[39] Yuldashev T.K., Kadirkulov B.J., “Boundary value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator”, Axioms, 9:2 (2020), 68 | DOI | MR
[40] Yuldashev T.K., Kadirkulov B.J., “Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator”, Ural Mathematical Journal, 6:1 (2020), 153–167 | DOI | MR | Zbl
[41] Yuldashev T.K., Karimov E.T., “Inverse problem for a mixed type integro-differential equation with fractional order Caputo operators and spectral parameters”, Axioms, 9:4 (2020), 121 | DOI | MR
[42] Fedorov V.E., Plekhanova M.V., Izhberdeeva E.M., “Initial value problems of linear equations with the Dzhrbashyan — Nersesyan derivative in Banach spaces”, Symmetry, 13:1058 (2021) | Zbl
[43] Volkova A.R., Izhberdeeva E.M., Fedorov V.E., “Initial value problem for linear equations with composition of fractional derivatives”, Chelyabinsk Physical and Mathematical Journal, 6:3 (2021), 269–277 | MR | Zbl
[44] Yuldashev T.K., Kadirkulov B.J., “Inverse boundary value problem for a fractional differential equations of mixed type with integral redefinition conditions”, Lobachevskii Journal of Mathematics, 42:3 (2021), 649–662 | DOI | MR | Zbl