Algorithms to solve absolute orientation problem for GL(3), O(3), and SO(3) groups
Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 97-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The most popular algorithm for aligning of 3D point data is the Iterative Closest Point (ICP). The point-to-point variational problem for orthogonal transformations is mathematically equivalent to the absolute orientation problem in photogrammetry. In this paper the survey of the known closed form methods to solve point-to-point ICP variation problem is proposed. Also, the new extension of the Horn algorithm for O(3) group to SO(3) group is obtained. Computer simulation illustrates the difference of performance for considered methods.
Keywords: absolute orientation problem, Iterative Closest Points (ICP), point-to-point, closed form solution, exact solution, orthogonal transformation, affine transformation.
@article{CHFMJ_2022_7_1_a7,
     author = {A. Yu. Makovetskii and S. M. Voronin and A. S. Voronin and T. Makavetskaya},
     title = {Algorithms to solve absolute orientation problem for {GL(3),} {O(3),} and {SO(3)} groups},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a7/}
}
TY  - JOUR
AU  - A. Yu. Makovetskii
AU  - S. M. Voronin
AU  - A. S. Voronin
AU  - T. Makavetskaya
TI  - Algorithms to solve absolute orientation problem for GL(3), O(3), and SO(3) groups
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2022
SP  - 97
EP  - 112
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a7/
LA  - en
ID  - CHFMJ_2022_7_1_a7
ER  - 
%0 Journal Article
%A A. Yu. Makovetskii
%A S. M. Voronin
%A A. S. Voronin
%A T. Makavetskaya
%T Algorithms to solve absolute orientation problem for GL(3), O(3), and SO(3) groups
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2022
%P 97-112
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a7/
%G en
%F CHFMJ_2022_7_1_a7
A. Yu. Makovetskii; S. M. Voronin; A. S. Voronin; T. Makavetskaya. Algorithms to solve absolute orientation problem for GL(3), O(3), and SO(3) groups. Čelâbinskij fiziko-matematičeskij žurnal, Tome 7 (2022) no. 1, pp. 97-112. http://geodesic.mathdoc.fr/item/CHFMJ_2022_7_1_a7/

[1] Besl P., McKay N., “A Method for registration of 3-D shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:2 (1992), 239–256 | DOI

[2] Turk G., Levoy M., “Zippered polygon meshes from range images”, Computer Graphics Proceeding. Annual Conference Series. ACM SIGGRAPH, 1994, 311–318

[3] Thompson E.H., “On exact linear solution of the problem of absolute orientation”, Photogrammetria, 15 (1958–1959), 163–179 | DOI | MR

[4] Du S., Zheng N., Meng G., Yuan Z., “Affine registration of point sets using ICP and ICA”, IEEE Signal Processing Letters, 15, 2008, 689–692 | DOI

[5] Horn B., “Closed-form solution of absolute orientation using unit quaternions”, Journal of the Optical Society of America A, 4:4 (1987), 629–642 | DOI

[6] Horn B., Hilden H., Negahdaripour S., “Closed-form solution of absolute orientation using orthonormal matrices”, Journal of the Optical Society of America Series A, 5:7 (1988), 1127–1135 | DOI | MR

[7] Umeyama S., “Least-squares estimation of transformation parameters between two point patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:4 (1991), 376–380 | DOI

[8] Stanford University Computer Graphics Laboratory. The Stanford 3D Scanning Repository website, accessed 20.11.2021 Available at: http://graphics.stanford.edu/data/3Dscanrep