Enrichment of solar cosmic rays by heavy
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 4, pp. 449-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the development of a mathematical model of the phenomenon of enrichment of solar cosmic rays (SCR) with heavy elements with simultaneous processes of particle injection and SCR formation. It is believed that SCR are enriched in the solar atmosphere at the injection stage, after which SCR enriched in heavy elements propagate in interplanetary space without a significant change in composition. The developed model is based on the numerical solution of the Fokker — Planck equation describing the process of injection of particles into SCR during their collisionless interaction with Plasmon’s of ion-acoustic turbulence of the solar flare plasma. A modified particle-in-cell method is used for modeling. It has been established in the work that the main factor determining the shape and form of the graph of the dependence of the enrichment coefficient on the atomic number of elements is the ionization temperature of the flare plasma; variation of other parameters of the model (energy density of ion-acoustic turbulence, magnetic field strength) leads only to a «rotation» of the graph relative to the base element (oxygen) without a significant change in the shape of the graph. Thus, the shape of the graph of the dependence of the enrichment factor of elements on their mass numbers can be used in the procedure for estimating the ionization temperature of the flare solar plasma. It is shown that the enrichment of SCR with ultraheavy elements and neutron-rich isotopes of heavy elements can be explained by the interaction of plasma particles with ion-acoustic waves.
Keywords: solar cosmic rays, enrichment factor, Fokker — Planck equation.
@article{CHFMJ_2021_6_4_a5,
     author = {V. V. Avdonin},
     title = {Enrichment of solar cosmic rays by heavy},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {449--463},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a5/}
}
TY  - JOUR
AU  - V. V. Avdonin
TI  - Enrichment of solar cosmic rays by heavy
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 449
EP  - 463
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a5/
LA  - ru
ID  - CHFMJ_2021_6_4_a5
ER  - 
%0 Journal Article
%A V. V. Avdonin
%T Enrichment of solar cosmic rays by heavy
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 449-463
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a5/
%G ru
%F CHFMJ_2021_6_4_a5
V. V. Avdonin. Enrichment of solar cosmic rays by heavy. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 4, pp. 449-463. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a5/

[1] Filippov B. P., “Mass ejections from the solar atmosphere”, Physics-Uspekhi, 62:9 (2019), 847–864 | DOI | MR

[2] Minasyants G. S., Minasyants T. M., Tomozov V. M., “Fe/O ratio behavior as an indicator of solar plasma state at different solar activity manifestations and in periods of their absence”, Solar-Terrestrial Physics, 4:1 (2018), 29–50 | DOI

[3] Wiedenbeck M. E., Mason G. M., Klecker B., “Isotopic fractionation in $^3$He-rich SEP events”, Journal of Physics: Conference Series, 1332:012017 (2019), 8 pp.

[4] Reames D. V., “Element abundances and source plasma temperatures of solar energetic particles”, Journal of Physics: Conference Series, 767:012023 (2016), 8 pp.

[5] Mason G. M., Mazur J. E., Dwyer J. R. [et al.]., “Abundances of heavy and ultraheavy ions in $^3$He-rich solar flares”, The Astrophysical Journal, 606:1 (2004), 555–564 | DOI

[6] Ibragimov I. A., Kocharov G. E., “Possible mechanism for enrichment of solar cosmic rays by helium-three and heavy nuclei”, Proc. 15-th Internat. Cosmic Ray Conf., 15-th Internat. Cosmic Ray Conf. (Bulgaria, Plovdiv, 1977), v. 12, 1977, 221–228

[7] Fisk L. A., “$^3$He-rich flares: a possible explanation”, The Astrophysical Journal, 224:3 (1978), 1048–1055 | DOI

[8] Kocharov L. G., Orishchenko A. V., “On the mechanism of solar cosmic ray enrichment by heavy ions”, Proc. 18th Internat. Cosmic Ray Conf., 18th Internat. Cosmic Ray Conf. (India, Bangalore, 1983), v. 4, 1983, 37–40

[9] Kocharov L. G., Orishchenko A. V., “The plasma mechanism for preferential acceleration of heavy ions”, Proc. 19th Intern. Cosmic Ray Conf., 19th Intern. Cosmic Ray Conf. (USA, La Jolla, 1985), v. 4, 1985, 293–296

[10] Kocharov L. G., “Plasma mechanisms for formation of composition of solar cosmic rays”, Proc. 20th Internat. Cosmic Ray Conf., 20th Internat. Cosmic Ray Conf. (Russia, Moscow, 1987), v. 3, 1987, 245–247

[11] Varvoglis H., Papadopoulos K., “Selective nonresonant acceleration of $^3$He$^{++}$ and heavy ions by H$^{+}$ cyclotron waves”, The Astrophysical Journal, 270:2 (1983), L95–L98 | DOI

[12] Hayakawa S., “Selective acceleration of $^3$He in solar flare particles by radiation pressure”, The Astrophysical Journal, 266:2 (1983), 370–372 | DOI

[13] Winglee R. M., “Heating and acceleration of heavy ions during solar flares”, The Astrophysical Journal, 343:1 (1989), 511–525 | DOI

[14] Riyopoulos S., “Subthreshold stochastic diffusion with application to selective acceleration of $^3$He in solar flares”, The Astrophysical Journal, 381:2 (1991), 578–582 | DOI

[15] Temerin M., Roth I., “The production of $^3$He and heavy ion enrichments in $^3$He-rich flares by electromagnetic hydrogen cyclotron waves”, The Astrophysical Journal, 391:2 (1992), L105–L108 | DOI

[16] Roth I., Temerin M., “Enrichment of $^3$He and heavy ions in impulsive solar flares”, The Astrophysical Journal, 477:2 (1997), 940–957 | DOI

[17] Miller J. A., Viñas A. F., “Ion acceleration and abundance enhancements by electron beam instabilities in impulsive solar flares”, The Astrophysical Journal, 412:1 (1993), 386–400 | DOI

[18] Nakazawa S., Zhang T. X., Ohsawa Y., “A model for heavy ion enhancements in association with $^3$He-rich events”, Solar Physics, 166:2 (1996), 159–171

[19] Zhang T. X., “An explanation for huge enhancements of ultraheavy ions in solar $^3$He-rich events”, The Astrophysical Journal, 617:1 (2004), L77–L80 | DOI

[20] hang T. X., Wang J. X., “An explanation for large enhancements of nitrogen relative to carbon and oxygen in solar $^3$He-rich events”, The Astrophysical Journal, 588:1 (2003), L57–L60 | DOI

[21] Liu S., Petrosian V., Mason G. M., “Stochastic acceleration of $^3$He and $^4$He in solar flares by parallel-propagating plasma waves: general results”, The Astrophysical Journal, 636:2 (2006), 462–474 | DOI

[22] Mason G. M., Nitta N. V., Wiedenbeck M. E., Innes D. E., “Evidence for a common acceleration mechanism for enrichments of $^3$He and heavy ions in impulsive SEP events”, The Astrophysical Journal, 823:1 (2016), 138–146 | DOI

[23] Mason G. M., Klecker B., “A possible mechanism for enriching heavy ions in $^3$He-rich solar energetic particle events”, The Astrophysical Journal, 862:1 (2018), 7–13 | DOI

[24] Stovpyuk M. F., Ostyakov V. M., “Non-homogeneous charge-consistent model for the acceleration of iron in the solar corona”, Proc. 10th European Solar Physics Meeting «Solar variability: from core to outer frontiers», 10th European Solar Physics Meeting «Solar variability: from core to outer frontiers» (Czech Republic, Prague, 2002), v. 506, 2002, 359–362

[25] Kartavykh Yu., Dröge W., Klecker B., “The effect of Coulomb losses on the relative abundance of heavy and ultraheavy ions in solar energetic particle events”, Proc. 31st Internat. Cosmic Ray Conf., 31st Internat. Cosmic Ray Conf. (Poland, Łódź, 7–15 July 2009), 2009, 4 pp.

[26] Eichler D., “Ultraheavy element enrichment in impulsive solar flares”, The Astrophysical Journal, 794:2 (2014), 6–12 | DOI

[27] Drake J. F., Cassak P. A., Shay M. A. [et al.]., “A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares”, The Astrophysical Journal, 700:1 (2009), L16–L20 | DOI

[28] Kumar R., Eichler D., Gaspari M., Spitkovsky A., “Preferential heating and acceleration of heavy ions in impulsive solar flares”, The Astrophysical Journal, 835:1 (2017), 295–300 | DOI

[29] Wu G. P., Wang D. Y., Xu A. A., Tang Y. H., “A study of the mechanism of acceleration of $^3$He and heavy ions by Alfven turbulence in impulsive flares”, Chinese Astronomy and Astrophysics, 26:3 (2002), 301–307 | DOI

[30] Bakunin O. G., “Quasilinear theory of plasma turbulence. Origins, ideas, and evolution of the method”, Physics-Uspekhi, 61:1 (2018), 52–83 | DOI

[31] Avdonin V.V., “Mathematical model of enrichment of solar cosmic rays content by heavy elements isotopes”, Marchuk Scientific Readings 2020, Proc. Intern. Conf. (Novosibirsk, Novosibirsk State University), 2020, 72 (In Russ.)

[32] Leske R. A., Mewaldt R. A., Cohen C. M. S. [et al.]., “Mass fractionation in solar energetic particles and the isotopic composition of the corona”, Proc. 27th Intern. Cosmic Ray Conf., 27th Intern. Cosmic Ray Conf. (Germany, Hamburg, 8–15 August 2001), v. 8, 2001, 3124–3127