Yield crop simulation for options pricing
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 4, pp. 512-528.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical models of yield and options pricing for crop yield have been developed. For this purpose, a one-factor Vasicek equilibrium model was used, describing the evolution of the instant interest rate and the price of a discount zero coupon bond. Based on the options pricing model for discount zero coupon bonds, a model of options pricing on crop yields is obtained. The price of a European call option is based on current weather conditions in the region and takes into account the operations (and their timeliness) that the farmer has performed to increase crop yields.
Keywords: crop yield forecasting, digital twins, Vasicek model, crop yield options pricing.
@article{CHFMJ_2021_6_4_a11,
     author = {M. M. Dyshaev and N. E. Ratanov and V. P. Dergilev and A. A. Lazarev},
     title = {Yield crop simulation for options pricing},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {512--528},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a11/}
}
TY  - JOUR
AU  - M. M. Dyshaev
AU  - N. E. Ratanov
AU  - V. P. Dergilev
AU  - A. A. Lazarev
TI  - Yield crop simulation for options pricing
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 512
EP  - 528
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a11/
LA  - ru
ID  - CHFMJ_2021_6_4_a11
ER  - 
%0 Journal Article
%A M. M. Dyshaev
%A N. E. Ratanov
%A V. P. Dergilev
%A A. A. Lazarev
%T Yield crop simulation for options pricing
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 512-528
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a11/
%G ru
%F CHFMJ_2021_6_4_a11
M. M. Dyshaev; N. E. Ratanov; V. P. Dergilev; A. A. Lazarev. Yield crop simulation for options pricing. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 4, pp. 512-528. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a11/

[1] Savin I.Yu., Bartalev S.A., Lupyan E.A. [et al.]., “Forecasting crop yields based on satellite data: opportunities and prospects”, Modern problems of remote sensing of the Earth from the cosmos, 7:3 (2010), 275–285 (In Russ.)

[2] Ng N., Loomis R. S., “Simulation of growth and yield of the potato crop”, Simulation of plant growth and crop production, 1984, 147

[3] Van Keulen H., Penning De Vries F. W. T., Drees E. M., “A summary model for crop growth”, Simulation of plant growth and crop production, 1982, 87–97

[4] Van Diepen C. A., Wolf J., van Keulen H. [et al.]., “{WOFOST}: a simulation model of crop production”, Soil Use and Management, 5:1 (1989), 16–24 | DOI | MR

[5] Ritchie J. T., Griffin T. S., Johnson B. S. [et al.]., “{SUBSTOR}: functional model of potato growth, development and yield”, Modelling and parameterization of the soil-plant-atmosphere system: a comparison of potato growth models, 1995, 401–435

[6] Kooman P. L., Haverkort A. J., “Modelling development and growth of the potato crop influenced by temperature and daylength: {LINTUL-POTATO}”, Potato Ecology and Modelling of Crops under Conditions Limiting Growth: Proceedings of the Second International Potato Modeling Conference (Wageningen 17-19 May, 1994), eds. A. J. Haverkort, D. K. L. MacKerron, Springer Netherlands, Dordrecht, 1995, 41–59 | DOI

[7] Haverkort A. J., Franke A. C., Steyn J. M. [et al.]., “A robust potato model: {LINTUL-POTATO-DSS}”, Potato Research, 58:4 (2015), 313–327 | DOI

[8] Keating B. A., Carberry P. S., Hammer G. L. [et al.]., “An overview of {APSIM}, a model designed for farming systems simulation”, European Journal of Agronomy, 18:3 (2003), 267–288 | DOI

[9] Borus D., Parsons D., Boersma M. [et al.]., “Improving the prediction of potato productivity: {APSIM-Potato} model parameterization and evaluation in {T}asmania, {A}ustralia”, Australian Journal of Crop Science, 12:1 (2018), 32–43 | DOI

[10] Makarov V.L., Bakhtizin A.R., Beklaryan G.L., “Development of digital doubles for manufacturing enterprises”, Business Informatics, 13:4 (2019), 7–16 (In Russ.) | MR

[11] Selyaninov G.T., “On agricultural climate assessment”, Works on agricultural meteorology, 20 (1928), 165–177 (In Russ.)

[12] Cherenkova E.A., Zolotokrylin A.N., “On the comparability of some quantitative indicators of drought”, Fundamental and applied climatology, 2 (2016), 79–94 (In Russ.)

[13] Saydak R.V., “Dependence of fertilizer efficiency on hydrothermal conditions”, Agroecological journal, 4 (2014), 74–78 (In Russ.)

[14] Ul'yanenko L.N., Filipas A.S., Amelyushkina T.A., “Potato yield depending on the plasticity of the variety and the hydrothermal coefficient”, Fertility, 2011, no. 6 (63), 41–42 (In Russ.)

[15] Dyshaev M. M., Daily Calculation of the 30-day Selyaninov Hydrothermal Indicator (Kurgan, 1894–2020), 2021 | DOI | Zbl

[16] Grimmett G., Stirzaker D., Probability and Random Processes, Oxford University Press, Oxford, 2001

[17] Shiryaev A.N., Bulinskiy A.V., Theory of Random Processes, Fizmatlit Publ., Moscow, 2005 (In Russ.)

[18] Vasicek O., “An equilibrium characterization of the term structure”, Journal of Financial Economics, 5:2 (1977), 177–188 | DOI | Zbl

[19] Nelson C. R., Siegel A. F., “Parsimonious modeling of yield curves”, The Journal of Business, 60:4 (1987), 473–489 | DOI

[20] Diebold F. X., Li C., “Forecasting the term structure of government bond yields”, Journal of Econometrics, 130:2 (2006), 337–364 | DOI | MR | Zbl

[21] G{ü}rkaynak R. S., Wright J. H., “Macroeconomics and the term structure”, Journal of Economic Literature, 50:2 (2012), 331–367 | DOI

[22] Björk T., Arbitrage theory in continuous time, Oxford University Press, Oxford, 2004 (In Russ.)

[23] Abu-Mostafa Y. S., “Financial model calibration using consistency hints”, IEEE Transactions on Neural Networks, 12:4 (2001), 791–808 | DOI

[24] Cotton P., Fouque J.-P., Papanicolaou G., Sircar R., “Stochastic volatility corrections for interest rate derivatives”, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 14:2 (2004), 173–200 | MR | Zbl

[25] Rodrigo M. R., Mamon R. S., “An alternative approach to the calibration of the Vasicek and CIR interest rate models via generating functions”, Quantitative Finance, 14:11 (2014), 1961–1970 | DOI | MR | Zbl

[26] Sousa J. B., Esquível M. L., Gaspar R. M., “Machine learning Vasicek model calibration with Gaussian processes”, Communications in Statistics — Simulation and Computation, 41:6 (2012), 776–786 | DOI | MR | Zbl

[27] Ratanov N. E., “{O}rnstein — {U}hlenbeck processes of bounded variation”, Methodology and Computing in Applied Probability, 23 (2020), 925–946 | DOI

[28] Jamshidian F., “An exact bond option formula”, The Journal of Finance, 44:1 (1989), 205–209 | DOI