Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2021_6_4_a11, author = {M. M. Dyshaev and N. E. Ratanov and V. P. Dergilev and A. A. Lazarev}, title = {Yield crop simulation for options pricing}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {512--528}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a11/} }
TY - JOUR AU - M. M. Dyshaev AU - N. E. Ratanov AU - V. P. Dergilev AU - A. A. Lazarev TI - Yield crop simulation for options pricing JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2021 SP - 512 EP - 528 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a11/ LA - ru ID - CHFMJ_2021_6_4_a11 ER -
M. M. Dyshaev; N. E. Ratanov; V. P. Dergilev; A. A. Lazarev. Yield crop simulation for options pricing. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 4, pp. 512-528. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_4_a11/
[1] Savin I.Yu., Bartalev S.A., Lupyan E.A. [et al.]., “Forecasting crop yields based on satellite data: opportunities and prospects”, Modern problems of remote sensing of the Earth from the cosmos, 7:3 (2010), 275–285 (In Russ.)
[2] Ng N., Loomis R. S., “Simulation of growth and yield of the potato crop”, Simulation of plant growth and crop production, 1984, 147
[3] Van Keulen H., Penning De Vries F. W. T., Drees E. M., “A summary model for crop growth”, Simulation of plant growth and crop production, 1982, 87–97
[4] Van Diepen C. A., Wolf J., van Keulen H. [et al.]., “{WOFOST}: a simulation model of crop production”, Soil Use and Management, 5:1 (1989), 16–24 | DOI | MR
[5] Ritchie J. T., Griffin T. S., Johnson B. S. [et al.]., “{SUBSTOR}: functional model of potato growth, development and yield”, Modelling and parameterization of the soil-plant-atmosphere system: a comparison of potato growth models, 1995, 401–435
[6] Kooman P. L., Haverkort A. J., “Modelling development and growth of the potato crop influenced by temperature and daylength: {LINTUL-POTATO}”, Potato Ecology and Modelling of Crops under Conditions Limiting Growth: Proceedings of the Second International Potato Modeling Conference (Wageningen 17-19 May, 1994), eds. A. J. Haverkort, D. K. L. MacKerron, Springer Netherlands, Dordrecht, 1995, 41–59 | DOI
[7] Haverkort A. J., Franke A. C., Steyn J. M. [et al.]., “A robust potato model: {LINTUL-POTATO-DSS}”, Potato Research, 58:4 (2015), 313–327 | DOI
[8] Keating B. A., Carberry P. S., Hammer G. L. [et al.]., “An overview of {APSIM}, a model designed for farming systems simulation”, European Journal of Agronomy, 18:3 (2003), 267–288 | DOI
[9] Borus D., Parsons D., Boersma M. [et al.]., “Improving the prediction of potato productivity: {APSIM-Potato} model parameterization and evaluation in {T}asmania, {A}ustralia”, Australian Journal of Crop Science, 12:1 (2018), 32–43 | DOI
[10] Makarov V.L., Bakhtizin A.R., Beklaryan G.L., “Development of digital doubles for manufacturing enterprises”, Business Informatics, 13:4 (2019), 7–16 (In Russ.) | MR
[11] Selyaninov G.T., “On agricultural climate assessment”, Works on agricultural meteorology, 20 (1928), 165–177 (In Russ.)
[12] Cherenkova E.A., Zolotokrylin A.N., “On the comparability of some quantitative indicators of drought”, Fundamental and applied climatology, 2 (2016), 79–94 (In Russ.)
[13] Saydak R.V., “Dependence of fertilizer efficiency on hydrothermal conditions”, Agroecological journal, 4 (2014), 74–78 (In Russ.)
[14] Ul'yanenko L.N., Filipas A.S., Amelyushkina T.A., “Potato yield depending on the plasticity of the variety and the hydrothermal coefficient”, Fertility, 2011, no. 6 (63), 41–42 (In Russ.)
[15] Dyshaev M. M., Daily Calculation of the 30-day Selyaninov Hydrothermal Indicator (Kurgan, 1894–2020), 2021 | DOI | Zbl
[16] Grimmett G., Stirzaker D., Probability and Random Processes, Oxford University Press, Oxford, 2001
[17] Shiryaev A.N., Bulinskiy A.V., Theory of Random Processes, Fizmatlit Publ., Moscow, 2005 (In Russ.)
[18] Vasicek O., “An equilibrium characterization of the term structure”, Journal of Financial Economics, 5:2 (1977), 177–188 | DOI | Zbl
[19] Nelson C. R., Siegel A. F., “Parsimonious modeling of yield curves”, The Journal of Business, 60:4 (1987), 473–489 | DOI
[20] Diebold F. X., Li C., “Forecasting the term structure of government bond yields”, Journal of Econometrics, 130:2 (2006), 337–364 | DOI | MR | Zbl
[21] G{ü}rkaynak R. S., Wright J. H., “Macroeconomics and the term structure”, Journal of Economic Literature, 50:2 (2012), 331–367 | DOI
[22] Björk T., Arbitrage theory in continuous time, Oxford University Press, Oxford, 2004 (In Russ.)
[23] Abu-Mostafa Y. S., “Financial model calibration using consistency hints”, IEEE Transactions on Neural Networks, 12:4 (2001), 791–808 | DOI
[24] Cotton P., Fouque J.-P., Papanicolaou G., Sircar R., “Stochastic volatility corrections for interest rate derivatives”, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 14:2 (2004), 173–200 | MR | Zbl
[25] Rodrigo M. R., Mamon R. S., “An alternative approach to the calibration of the Vasicek and CIR interest rate models via generating functions”, Quantitative Finance, 14:11 (2014), 1961–1970 | DOI | MR | Zbl
[26] Sousa J. B., Esquível M. L., Gaspar R. M., “Machine learning Vasicek model calibration with Gaussian processes”, Communications in Statistics — Simulation and Computation, 41:6 (2012), 776–786 | DOI | MR | Zbl
[27] Ratanov N. E., “{O}rnstein — {U}hlenbeck processes of bounded variation”, Methodology and Computing in Applied Probability, 23 (2020), 925–946 | DOI
[28] Jamshidian F., “An exact bond option formula”, The Journal of Finance, 44:1 (1989), 205–209 | DOI