Three-dimensional structure and electronic properties of crystals formed from layers\\ of fluorine functionalized hexagonal graphene
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 363-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simulation of the three-dimensional structure of fluorographene crystals was carried out by the method of atom-atomic potential. Fluorinated graphene crystals were formed from five different polymorphic varieties of fluorine functionalized hexagonal graphene. As a result of calculations, it was found that the interlayer distance in crystals varies in the range from 0.4727 to 0.5745 nm. The relative shift of adjacent layers, at which the minimum of the interlayer bond energy is observed, varies from zero, for T1 type crystals, to a maximum value equal to 0.1683 nm in T4 type crystals. The calculated density of fluorographene crystals varies from 3.233 to 3.975 g/cm${}^3$. As a result of calculations of the electronic structure performed by the density functional theory method, it was established that the band gap varies from 2.505 eV in CF crystals of the T1 structural type to 3.666 eV in T4 crystals. The band gap for different structure types in three-dimensional fluorographene crystals is 0.276–0.594 eV less than the band gap for the corresponding isolated monolayers of fluorinated hexagonal graphene.
Keywords: graphene, functionalized graphene, atom-atomic potential method, ab initio calculations, polymorphism, crystal structure, electronic structure.
@article{CHFMJ_2021_6_3_a9,
     author = {M. E. Belenkov and V. M. Chernov},
     title = {Three-dimensional structure and electronic properties of crystals formed from layers\\ of fluorine functionalized hexagonal graphene},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {363--374},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a9/}
}
TY  - JOUR
AU  - M. E. Belenkov
AU  - V. M. Chernov
TI  - Three-dimensional structure and electronic properties of crystals formed from layers\\ of fluorine functionalized hexagonal graphene
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 363
EP  - 374
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a9/
LA  - ru
ID  - CHFMJ_2021_6_3_a9
ER  - 
%0 Journal Article
%A M. E. Belenkov
%A V. M. Chernov
%T Three-dimensional structure and electronic properties of crystals formed from layers\\ of fluorine functionalized hexagonal graphene
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 363-374
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a9/
%G ru
%F CHFMJ_2021_6_3_a9
M. E. Belenkov; V. M. Chernov. Three-dimensional structure and electronic properties of crystals formed from layers\\ of fluorine functionalized hexagonal graphene. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 363-374. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a9/

[1] Freitag M., “Nanoelectronics goes flat out”, Nature nanotechnologys, 3 (2008), 455–457 | DOI

[2] Ho K.-I., Huang C.-H., Liao J.-H. et al., “Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics”, Scientific Reports, 4 (2014), 5893

[3] Chang K.-P., Ho K.-I., Boutchich M. et al., “Graphene/fluorographene heterostructure for nano ribbon transistor channel”, Semiconductor Science and Technology, 35:1 (2019), 015005 | DOI

[4] Omar G., Salim M. A., Mizah B. R. et al., “Electronic applications of functionalized graphene nanocomposites”, Functionalized graphene nanocomposites and their derivatives, ed. M. Jawaid, R. Bouhfid, A. K. Qaiss, Elsevier, Amsterdam, 2019, 245–263 | DOI

[5] Enyashin A. N., Ivanovskii A. L., “Graphene allotropes”, 2011, 248, 1879–1883

[6] Wen X.-D., Hand L., Labet V. et al., “Graphane sheets and crystals under pressure”, PNAS, 108:17 (2011), 6833–6837 | DOI

[7] Belenkov E. A., Kochengin A. E., “Struktura i elektronnye svoistva kristallov, sostoyaschikh iz grafenovykh sloev L$_6$, L${}_{4-8}$, L${}_{3-12}$ i L${}_{4-6-12}$”, Fizika tverdogo tela, 57 (2015), 2071–207

[8] Belenkova T. E., Greshnyakov V. A., Chernov V. M., Belenkov E. A., “Structure of graphane polymorphs”, Journal of Physics: Conference Series, 917 (2017), 032015 | DOI

[9] Belenkov M. E., Chernov V. M., Belenkov E. A., “Struktura i elektronnye svoistva polimorfnykh raznovidnostei ftorografena”, Chelyab. fiz.-mat. zhurn., 3:2 (2018), 202–211

[10] Belenkov M. E., Chernov V. M., Belenkov E. A., Morilova V. M., “Structure and electronic properties of 5-7 graphene”, IOP Conference Series: Materials Science and Engineering, 447 (2018), 012005 | DOI

[11] Belenkov M. E., Kochengin A. E., Chernov V. M., Belenkov E. A., “Graphene polymorphs”, IOP Journal of Physics: Conference Series, 1399 (2019), 022024 | DOI

[12] Grishakov K. S., Katin K. P., Maslov M. M., Prudkovskiy V. S., “Relative stabilities of various fully functionalized graphene polymorphs under mechanical strain and electric field”, Applied Surface Science, 463 (2019), 1051–1057 | DOI

[13] Wallace P. R., “The band theory of graphite”, Physical Review, 71:9 (1947), 622–634 | DOI | Zbl

[14] Slonczewski J. C., Weiss P. R., “Band structure of graphite”, Physical Review, 109:2 (1958), 272–279 | DOI

[15] Hwang E. H., Adam S., Das Sarma S., “Carrier transport in two-dimensional graphene layers”, Physical Review Letter, 98:18 (2007), 186806 | DOI

[16] Nair R. R., Ren W., Jalil R. et al., “Fluorographene: a two-dimensional counterpart of teflon”, Small, 6:24 (2010), 2877–2884 | DOI

[17] Zboril R., Karlicky F., Bourlinos A. B. et al., “Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to grapheme”, Small, 6:24 (2010), 2885–2891 | DOI

[18] Belenkov M. E., Chernov V. M., Belenkov E. A., “Structure of fluorographene and its polymorphous varieties”, IOP Journal of Physics: Conference Series, 1124 (2018), 022010 | DOI

[19] Belenkov M.E., Chernov V.M., “Crystal and electronic structure of 3-12 graphene functionalized by fluorine”, Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 11 (2019), 406–413 | DOI

[20] Belenkov M. E., Chernov V. M., Belenkov E. A., “Simulation of the structure and electronic properties of fluorographene polymorphs formed on the basis of 4-8 graphene”, IOP Conference Series: Materials Science and Engineering, 537 (2019), 022058 | DOI

[21] Belenkov M.E., Chernov V.M., “Structure and electronic properties of 4-6-12 graphene layers functionalized by fluorine”, Letters on Materials, 10:3 (2020), 254–259 | DOI

[22] Belenkov M.E., Chernov V.M., “Ab initio calculations of the crystalline and electronic structure of 5-7 fluorographene varieties”, Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 12 (2020), 326–337 | DOI

[23] Kitaygorodskiy A.I., Molecular crystals, Nauka Publ., Moscow, 1971 (In Russ.)

[24] Pertsin A., Kitaigorodsky A. I., “The Atom-Atom Potential Method”, Berlin, Heidelberg, 1987 (Springer-Verlag), 69–148

[25] Varadwaj A., Marques H. M., Varadwaj P. R., Is the fluorine in molecules dispersive? Is molecular electrostatic potential a valid property to explore fluorine-centered non-covalent interactions?, Molecules, 24 (2019), 379 | DOI

[26] Giannozzi P., Baroni S., Bonini N. et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials”, Journal of Physics: Condensed Matter, 21:39 (2009), 395502 | DOI

[27] Koch W. A., Holthausen M. C., Chemist's Guide to Density Functional Theory, Wiley-VCH, Weinheim, 2002

[28] Perdew J. P., Chevary J. A., Vosko S. H. et al., “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Physical Review B., 46 (1992), 6671–6687 | DOI