Estimating nonstationary planing of a round cylinder along the disturbed fluid surface
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 338-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method of analyzing nonstationary planing of a round cylinder along the disturbed fluid surface is developed. A problem to be settled with a method of flat sections is set up as a flat problem in a ring layer. The unknown velocity potential is presented with Green formula and evaluated as a potential of simple and doubled layer. The comparison of obtained results with experimental data is given.
Keywords: planing, two-phase flow, hydrodynamics, nonstationary flow, method of flat sections, cavitation.
@article{CHFMJ_2021_6_3_a7,
     author = {V. I. Pegov and I. Yu. Moshkin and A. D. Cheshko},
     title = {Estimating nonstationary planing of a round cylinder along the disturbed fluid surface},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {338--346},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a7/}
}
TY  - JOUR
AU  - V. I. Pegov
AU  - I. Yu. Moshkin
AU  - A. D. Cheshko
TI  - Estimating nonstationary planing of a round cylinder along the disturbed fluid surface
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 338
EP  - 346
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a7/
LA  - ru
ID  - CHFMJ_2021_6_3_a7
ER  - 
%0 Journal Article
%A V. I. Pegov
%A I. Yu. Moshkin
%A A. D. Cheshko
%T Estimating nonstationary planing of a round cylinder along the disturbed fluid surface
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 338-346
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a7/
%G ru
%F CHFMJ_2021_6_3_a7
V. I. Pegov; I. Yu. Moshkin; A. D. Cheshko. Estimating nonstationary planing of a round cylinder along the disturbed fluid surface. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 338-346. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a7/

[1] Lumb G., Hydrodynamics of flows with free boundaries, OGIZ tekhniko-teoreticheskoy literatury, Moscow, 1947 (In Russ.)

[2] Milne-Thomson L.M., Theoretical Hydrodynamics, Dover Publ., New York, 1968

[3] Logvinovich G.V., Hydrodynamics of flows with free boundaries, Naukova dumka, Kiev, 1969 (In Russ.)

[4] Degtiar V.I., Pegov V.I., Hydrodynamics of rocket launches from underwaters, Mashinostroenie, Moscow, 2009 (In Russ.)

[5] Pegov V.I., Moshkin I.Yu., “Analysis of fluid dynamics of cavitational launch technique”, Chelyabinsk Physical and Mathematical Journal, 3:4 (2018), 476–485 | Zbl

[6] Nikulin E.S., Pegov V.I., Cheshko A.D., Moshkin Yu.I., “Numerical simulation of load and heat loads on a submarine at missile launch”, Bulletin of the VKO “Almaz-Antey” concern, 4 (2020), 47–53 (In Russ.)

[7] Pegov V.I., Moshkin I.Yu., “Mathematical modeling of processes of heat and mass transfer of hot gas jets with fluid during underwater vehicle launch”, Chelyabinsk Physical and Mathematical Journal, 5:4, part. 1 (2020), 451–462 (In Russ.)

[8] Vorobyev Yu.V., Method of moments in applied mathematics, Fizmatgiz, Moscow, 1958, 268 pp. (In Russ.)