On solving problems of heat and mass transfer in piecewise homogeneous regions with a weakly permeable film
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 312-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value problems for the equations of thermal conductivity in a band $D(x\in R,\,0$ divided by a weakly permeable film $x=0$ into two half-bands $D_1(x0,\,0$ and $D_2(x>0,\,0$ with different permeabilities $k_i$ in $D_i$, $i=1,2$, under different types of boundary conditions are considered. A weakly permeable film is modeled as an infinitely thin layer with an infinitesimal permeability. Generalized conjugation conditions on the film are derived for the potentials $u_i(x,y,t)$, $i=1,2$. Problems with a weakly permeable film $x=0$ are considered for steady-state processes in a piecewise homogeneous band $D$ (at $k_1\neq k_2$), for unsteady processes in a homogeneous band $D$ (at $k_1=k_2$), and for unsteady processes in a piecewise homogeneous rod $D(x\in R)=D_1(x0)\cup\{x=0\}\cup D_2(x>0)$ (at $k_1\neq k_2$ for one-dimensional thermal conductivity equations). General formulas are derived that express the solutions of the considered problems through the solutions of similar classical problems in the corresponding homogeneous domain $D$ (without film) in the form of rapidly converging nonconforming integrals. The existence and uniqueness theorem is proved for the considered class of problems.
Keywords: boundary value problems for the heat equation, weakly permeable film.
@article{CHFMJ_2021_6_3_a4,
     author = {S. E. Kholodovskii},
     title = {On solving problems of heat and mass transfer in piecewise homogeneous regions with a weakly permeable film},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {312--320},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a4/}
}
TY  - JOUR
AU  - S. E. Kholodovskii
TI  - On solving problems of heat and mass transfer in piecewise homogeneous regions with a weakly permeable film
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 312
EP  - 320
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a4/
LA  - ru
ID  - CHFMJ_2021_6_3_a4
ER  - 
%0 Journal Article
%A S. E. Kholodovskii
%T On solving problems of heat and mass transfer in piecewise homogeneous regions with a weakly permeable film
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 312-320
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a4/
%G ru
%F CHFMJ_2021_6_3_a4
S. E. Kholodovskii. On solving problems of heat and mass transfer in piecewise homogeneous regions with a weakly permeable film. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 312-320. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a4/