Entropine-randomized forecasting of the evolution of the area of thermokarst lakes
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 384-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article proposes an alternative approach to the existing one in machine learning, which is called randomized forecasting. The approach is based on a randomized parameterized model of the process under study. The structure of the general model of the evolution of the area of the thermokarst lakes is described. To model the area of the thermokarst lakes and the average annual temperature and annual precipitation that affect it, mathematical linear dynamic regression models with random parameters are used. Three types of forecasts are considered: short-term, medium-term and long-term for three permafrost zones (continuous, discontinuous and insular) on the territory of Western Siberia. All results obtained are reproducible within the mean and standard error limits. The test results show that the selected type of the model for randomized forecasting of the evolution of lake areas describes well the dependence of the area of the lakes and leads to low values of relative errors of 0.01–0.02. On the other hand, similar modeling of temperature and precipitation leads to significantly larger errors from 0.08 to 0.22. The resulting forecast of the evolution of the area of the lakes in the permafrost zone under climatic changes is characterized by standard deviations not exceeding 2–4.5 %.
Keywords: thermokarst lakes, remote sensing, information entropy, balance equations, dynamic regression, optimization, Lyapunov problem, sampling, randomized forecasting, randomized machine learning.
@article{CHFMJ_2021_6_3_a11,
     author = {Yu. A. Dubnov and V. Yu. Polishchuk and A. Yu. Popkov and E. S. Sokol and A. V. Mel'nikov and Yu. M. Polishchuk and Yu. S. Popkov},
     title = {Entropine-randomized forecasting of the evolution of the area of thermokarst lakes},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {384--396},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a11/}
}
TY  - JOUR
AU  - Yu. A. Dubnov
AU  - V. Yu. Polishchuk
AU  - A. Yu. Popkov
AU  - E. S. Sokol
AU  - A. V. Mel'nikov
AU  - Yu. M. Polishchuk
AU  - Yu. S. Popkov
TI  - Entropine-randomized forecasting of the evolution of the area of thermokarst lakes
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 384
EP  - 396
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a11/
LA  - ru
ID  - CHFMJ_2021_6_3_a11
ER  - 
%0 Journal Article
%A Yu. A. Dubnov
%A V. Yu. Polishchuk
%A A. Yu. Popkov
%A E. S. Sokol
%A A. V. Mel'nikov
%A Yu. M. Polishchuk
%A Yu. S. Popkov
%T Entropine-randomized forecasting of the evolution of the area of thermokarst lakes
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 384-396
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a11/
%G ru
%F CHFMJ_2021_6_3_a11
Yu. A. Dubnov; V. Yu. Polishchuk; A. Yu. Popkov; E. S. Sokol; A. V. Mel'nikov; Yu. M. Polishchuk; Yu. S. Popkov. Entropine-randomized forecasting of the evolution of the area of thermokarst lakes. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 384-396. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a11/

[1] Kirpotin S., Polishchuk Yu., Bryksina N., “Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting”, International Journal of Environmental Studies., 66:4 (2009), 423–431 | DOI

[2] Karlson J. M., Lyon S. W., Destouni G., “Temporal behavior of lake size-distributionin a thawing permafrost landscape in Northwestern Siberia”, Remote Sensing, 2014, no. 6, 621–636 | DOI

[3] Vapnik V. N., Statistical Learning Theory, John Willey Sons, New York, 1998

[4] Bishop C., Pattern Recognition and Machine Learning, Springer, New York, 2007

[5] Zellner A., “Bayesian shrinkage estimation and forecasts of individual and total or aggregate outcomes”, Economic Modelling, 27:6 (2010), 1392–1397 | DOI

[6] Horvath R., “Research development and growth: A Bayesian model averaging analysis”, Economic Modelling, 28:6 (2011), 2669–2673 | DOI

[7] Allen M. R., Stainforth D. A., “Towards objective probabilistic climate forecasting”, Nature, 419:228 (2002)

[8] Lawrence M., Goodwin P., O’Connor M., Önkal D., “Judgemental forecasting: A review of progress over the last 25 years”, International Journal of Forecasting, 22:3 (2006), 493–518 | DOI

[9] Popkov Yu., Popkov A., “New method of entropy-robust estimation for randomized models under limited data”, Entropy, 16 (2014), 675–698 | DOI

[10] Popkov Yu.S., Popkov A.Yu., Dubnov Yu.A., Randomized machine learning with limited data, Nauka Publ., Moscow, 2019 (In Russ.)

[11] Popkov Yu. S., Popkov A. Yu., Dubnov Yu. A., Solamatine D., “Entropy-randomized forecasting of stochastic dynamic regression models”, Mathematics, 8 (2020), 1119 | DOI

[12] Vidyasagar M., “Statistical learning theory and randomized algorithms for control”, IEEE Control System Magazine, 1:17 (1998), 69–88

[13] Lutz W., Sandersen S., Scherbov S., “The end of world population growth”, Nature, 412:6846 (2001), 543–545 | DOI

[14] Granichin O.N., Polyak B.T., Randomized estimation and optimization algorithms with almost arbitrary noises, Nauka Publ., Moscow, 2002 (In Russ.)

[15] Biondo A. E., Pluchino A., Rapisarda A., Helbing D., Are random traiding strategies more successful than technical ones?, PLoS ONE, 6:7 (2013), e68344 | DOI

[16] Jaynes E. T., “Information theory and statistical mechanics”, Physics Review, 106 (1957), 620–630 | DOI | Zbl

[17] Jaynes E. T., Papers on Probability, Statistics and Statistical Physics, Kluwer Academic Publisher, Dordrecht, 1989 | Zbl

[18] Ajvazyan S.A., Enyukov I.S., Meshalkin L.D., “Prikladnaya statistika: Issledovaniye zavisimostey”, Bulletin of South Ural State University. Series: Mathematics. Mechanics. Physics, 5:2 (2013), 45–51 (In Russ.)

[19] Ajvazyan S.A., Enyukov I.S., Meshalkin L.D., Applied Statistics: Exploring Dependencies, Finance and Statistics, Moscow, 1985 (In Russ.)