Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 278-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of contact problems on the equilibrium of a Timoshenko composite plate containing two thin rigid inclusions, which are connected in a hinged manner. The family's problems depends on a parameter specifying the coordinate of a connection point of the inclusions. An optimal control problem is formulated with a quality functional defined using an arbitrary continuous functional given on a suitable Sobolev space. In this case, control is specified by the coordinate parameter of the connection point of the inclusions. The continuity of solutions of the family's problems on this parameter is proved. The solvability of the optimal control problem is established.
Keywords: optimal control, hinged joint, rigid inclusion, contact problem, nonpenetration condition.
@article{CHFMJ_2021_6_3_a1,
     author = {N. P. Lazarev and E. F. Sharin and G. M. Semenova},
     title = {Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a {Timoshenko} plate},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {278--288},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - E. F. Sharin
AU  - G. M. Semenova
TI  - Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 278
EP  - 288
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/
LA  - ru
ID  - CHFMJ_2021_6_3_a1
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A E. F. Sharin
%A G. M. Semenova
%T Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 278-288
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/
%G ru
%F CHFMJ_2021_6_3_a1
N. P. Lazarev; E. F. Sharin; G. M. Semenova. Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 278-288. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/

[1] Khludnev A., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Mathematical Methods in the Applied Sciences., 33:16 (2010), 1955–1967 | Zbl

[2] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Journal of Applied Mathematics and Mechanics, 92:9 (2012), 716–730 | Zbl

[3] Lazarev N. P., Rudoy E. M., “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Journal of Applied Mathematics and Mechanics, 97:9 (2017), 1120–1127

[4] Kazarinov N. A., Rudoy E. M., Slesarenko V. Y., Shcherbakov V. V., “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Computational Mathematics and Mathematical Physics, 58:5 (2018), 761–774 | DOI | Zbl

[5] Rudoy E. M., Lazarev N. P., “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, Journal of Computational and Applied Mathematics, 334 (2018), 18–26 | DOI | Zbl

[6] Pyatkina E. V., “A contact of two elastic plates connected along a thin rigid inclusion”, Siberian Electronic Mathematical Reports, 17 (2020), 1797–1815 | Zbl

[7] Lazarev N. P., Semenova G. M., Romanova N. A., “On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack”, Journal of Siberian Federal University. Mathematics and Physics, 14:1 (2021), 28–41 | DOI | Zbl

[8] Khludnev A. M., “Inverse problems for elastic body with closely located thin inclusions”, Journal of Applied Mathematics and Physics, 70:5 (2019), 134 | Zbl

[9] Khludnev A., Esposito A. C., Faella L., “Optimal control of parameters for elastic body with thin inclusions”, Journal of Optimization Theory and Applications., 184:1 (2020), 293–314 | DOI | Zbl

[10] Khludnev A. M., Popova T. S., “On junction problem with damage parameter for Timoshenko and rigid inclusions inside elastic body”, Journal of Applied Mathematics and Mechanics, 100:8 (2020), e202000063

[11] Leugering G., Sokolowski J., Zochowski A., “Control of crack propagation by shape-topological optimization”, Discrete and Continuous Dynamical Systems. Series A, 35:6 (2015), 2625–2657 | DOI | Zbl

[12] Kovtunenko V. A., Leugering G., “A shape-topological control problem for nonlinear crack-defect interaction: The antiplane variational model”, SIAM Journal on Control and Optimization, 54:3 (2016), 1329–1351 | DOI | Zbl

[13] Lazarev N. P., Popova T. S., Rogerson G. A., “Optimal control of the radius of a rigid circular inclusion in inhomogeneous two-dimensional bodies with cracks”, Journal of Applied Mathematics and Physics, 69:3 (2018), 53 | Zbl

[14] Lazarev N., Everstov V., “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Journal of Applied Mathematics and Mechanics, 99:3 (2019), e201800268

[15] Rudoy E., Shcherbakov V., “First-order shape derivative of the energy for elastic plates with rigid inclusions and interfacial cracks”, Published online 16.11.2020, Applied Mathematics and Optimization, 2020

[16] Lazarev N., Romanova N., Semenova G., “Optimal location of a thin rigid inclusion for a problem describing equilibrium of a composite Timoshenko plate with a crack”, Journal of Inequalities and Applications, 2020:1 (2020), 29 | DOI

[17] Lazarev N. P., “Problem of equilibrium of the timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity”, Journal of Applied Mechanics and Technical Physics, 54:2 (2013), 322–330 | DOI | Zbl

[18] Itou H., Khludnev A. M., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Mathematical Methods in the Applied Sciences, 39:17 (2016), 4980–4993 | DOI | Zbl

[19] Lazarev N. P., Itou H., Neustroeva N. V., “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Japan Journal of Industrial and Applied Mathematics, 33:1 (2016), 63–80 | DOI | Zbl

[20] Rudoy E. M., “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, Journal of Applied and Industrial Mathematics, 10 (2016), 264–276 | DOI

[21] Khludnev A., Popova T., “Equilibrium problem for elastic body with delaminated T-shape inclusion”, Journal of Computational and Applied Mathematics, 376 (2020), 112870 | DOI | Zbl

[22] Pelekh B.L., Theory of shells with finite shear stiffness, Naukova dumka Publ., Kiev, 1973 (In Russ.)

[23] Lazarev N. P., “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Numerical Analysis and Applications, 4:4 (2011), 309–318 | DOI | Zbl

[24] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000