Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2021_6_3_a1, author = {N. P. Lazarev and E. F. Sharin and G. M. Semenova}, title = {Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a {Timoshenko} plate}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {278--288}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/} }
TY - JOUR AU - N. P. Lazarev AU - E. F. Sharin AU - G. M. Semenova TI - Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2021 SP - 278 EP - 288 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/ LA - ru ID - CHFMJ_2021_6_3_a1 ER -
%0 Journal Article %A N. P. Lazarev %A E. F. Sharin %A G. M. Semenova %T Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate %J Čelâbinskij fiziko-matematičeskij žurnal %D 2021 %P 278-288 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/ %G ru %F CHFMJ_2021_6_3_a1
N. P. Lazarev; E. F. Sharin; G. M. Semenova. Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 278-288. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/
[1] Khludnev A., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Mathematical Methods in the Applied Sciences., 33:16 (2010), 1955–1967 | Zbl
[2] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Journal of Applied Mathematics and Mechanics, 92:9 (2012), 716–730 | Zbl
[3] Lazarev N. P., Rudoy E. M., “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Journal of Applied Mathematics and Mechanics, 97:9 (2017), 1120–1127
[4] Kazarinov N. A., Rudoy E. M., Slesarenko V. Y., Shcherbakov V. V., “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Computational Mathematics and Mathematical Physics, 58:5 (2018), 761–774 | DOI | Zbl
[5] Rudoy E. M., Lazarev N. P., “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, Journal of Computational and Applied Mathematics, 334 (2018), 18–26 | DOI | Zbl
[6] Pyatkina E. V., “A contact of two elastic plates connected along a thin rigid inclusion”, Siberian Electronic Mathematical Reports, 17 (2020), 1797–1815 | Zbl
[7] Lazarev N. P., Semenova G. M., Romanova N. A., “On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack”, Journal of Siberian Federal University. Mathematics and Physics, 14:1 (2021), 28–41 | DOI | Zbl
[8] Khludnev A. M., “Inverse problems for elastic body with closely located thin inclusions”, Journal of Applied Mathematics and Physics, 70:5 (2019), 134 | Zbl
[9] Khludnev A., Esposito A. C., Faella L., “Optimal control of parameters for elastic body with thin inclusions”, Journal of Optimization Theory and Applications., 184:1 (2020), 293–314 | DOI | Zbl
[10] Khludnev A. M., Popova T. S., “On junction problem with damage parameter for Timoshenko and rigid inclusions inside elastic body”, Journal of Applied Mathematics and Mechanics, 100:8 (2020), e202000063
[11] Leugering G., Sokolowski J., Zochowski A., “Control of crack propagation by shape-topological optimization”, Discrete and Continuous Dynamical Systems. Series A, 35:6 (2015), 2625–2657 | DOI | Zbl
[12] Kovtunenko V. A., Leugering G., “A shape-topological control problem for nonlinear crack-defect interaction: The antiplane variational model”, SIAM Journal on Control and Optimization, 54:3 (2016), 1329–1351 | DOI | Zbl
[13] Lazarev N. P., Popova T. S., Rogerson G. A., “Optimal control of the radius of a rigid circular inclusion in inhomogeneous two-dimensional bodies with cracks”, Journal of Applied Mathematics and Physics, 69:3 (2018), 53 | Zbl
[14] Lazarev N., Everstov V., “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Journal of Applied Mathematics and Mechanics, 99:3 (2019), e201800268
[15] Rudoy E., Shcherbakov V., “First-order shape derivative of the energy for elastic plates with rigid inclusions and interfacial cracks”, Published online 16.11.2020, Applied Mathematics and Optimization, 2020
[16] Lazarev N., Romanova N., Semenova G., “Optimal location of a thin rigid inclusion for a problem describing equilibrium of a composite Timoshenko plate with a crack”, Journal of Inequalities and Applications, 2020:1 (2020), 29 | DOI
[17] Lazarev N. P., “Problem of equilibrium of the timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity”, Journal of Applied Mechanics and Technical Physics, 54:2 (2013), 322–330 | DOI | Zbl
[18] Itou H., Khludnev A. M., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Mathematical Methods in the Applied Sciences, 39:17 (2016), 4980–4993 | DOI | Zbl
[19] Lazarev N. P., Itou H., Neustroeva N. V., “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Japan Journal of Industrial and Applied Mathematics, 33:1 (2016), 63–80 | DOI | Zbl
[20] Rudoy E. M., “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, Journal of Applied and Industrial Mathematics, 10 (2016), 264–276 | DOI
[21] Khludnev A., Popova T., “Equilibrium problem for elastic body with delaminated T-shape inclusion”, Journal of Computational and Applied Mathematics, 376 (2020), 112870 | DOI | Zbl
[22] Pelekh B.L., Theory of shells with finite shear stiffness, Naukova dumka Publ., Kiev, 1973 (In Russ.)
[23] Lazarev N. P., “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Numerical Analysis and Applications, 4:4 (2011), 309–318 | DOI | Zbl
[24] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000