Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 278-288

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of contact problems on the equilibrium of a Timoshenko composite plate containing two thin rigid inclusions, which are connected in a hinged manner. The family's problems depends on a parameter specifying the coordinate of a connection point of the inclusions. An optimal control problem is formulated with a quality functional defined using an arbitrary continuous functional given on a suitable Sobolev space. In this case, control is specified by the coordinate parameter of the connection point of the inclusions. The continuity of solutions of the family's problems on this parameter is proved. The solvability of the optimal control problem is established.
Keywords: optimal control, hinged joint, rigid inclusion, contact problem, nonpenetration condition.
@article{CHFMJ_2021_6_3_a1,
     author = {N. P. Lazarev and E. F. Sharin and G. M. Semenova},
     title = {Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a {Timoshenko} plate},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {278--288},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - E. F. Sharin
AU  - G. M. Semenova
TI  - Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 278
EP  - 288
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/
LA  - ru
ID  - CHFMJ_2021_6_3_a1
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A E. F. Sharin
%A G. M. Semenova
%T Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 278-288
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/
%G ru
%F CHFMJ_2021_6_3_a1
N. P. Lazarev; E. F. Sharin; G. M. Semenova. Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 3, pp. 278-288. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_3_a1/