Fractional powers of Bessel operator and its numerical calculation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 2, pp. 172-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses the fractional powers of the Bessel operator and their numerical implementation. An extensive literature is devoted to the study of fractional powers of the Laplace operator and their applications. Such degrees are used in the construction of functional spaces, in the natural generalization of the Schrödinger equation in the quantum theory, in the construction of the models of acoustic wave propagation in complex media (for example, biological tissues) and space-time models of anomalous (very slow or very fast) diffusion, in spectral theory etc. If we assume the radiality of the function on which the Laplace operator acts, then we receive the problem of constructing the fractional power of the Bessel operator. We propose to use a compositional method for constructing the operators mentioned earlier, which leads to constructions similar in their properties to the Riesz derivatives. The Hankel transform is considered as a basic integral transformation. On its basis, the compositional method proposed by V.V. Katrakhov and S.M. Sitnik, negative powers of the Bessel operator are constructed. The resulting operator contains the Gaussian hypergeometric function in the kernel. For further study, the generalized translation operator is considered in the article, and its properties are proved. For constructing a positive fractional power of the Bessel operator known methods of regularization of the integral are considered. Then, a scheme for the numerical calculation of fractional powers of the Bessel operator is proposed. This scheme is based on the Taylor — Delsarte formula obtained by B.M. Levitan. Examples containing the exact and approximate values of the positive and negative powers of the Bessel operator, the absolute error, and illustrations are given. The list of references contains sources with known results on similar fractional operators, as well as applications of them.
Keywords: Bessel operator, fractional power, Hankel integral transform, composition method, transmutation operators.
@article{CHFMJ_2021_6_2_a3,
     author = {D. K. Durdiev and E. L. Shishkina and S. M. Sitnik},
     title = {Fractional powers of {Bessel} operator and its numerical calculation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {172--189},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a3/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - E. L. Shishkina
AU  - S. M. Sitnik
TI  - Fractional powers of Bessel operator and its numerical calculation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 172
EP  - 189
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a3/
LA  - en
ID  - CHFMJ_2021_6_2_a3
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A E. L. Shishkina
%A S. M. Sitnik
%T Fractional powers of Bessel operator and its numerical calculation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 172-189
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a3/
%G en
%F CHFMJ_2021_6_2_a3
D. K. Durdiev; E. L. Shishkina; S. M. Sitnik. Fractional powers of Bessel operator and its numerical calculation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 2, pp. 172-189. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a3/

[1] Fitouhi A., Jebabli I., Shishkina E.L., Sitnik S.M., “Applications of integral transforms composition method to wave-type singular differential equations and index shift transmutations”, Electronic Journal of Differential Equations, 130 (2018), 1–27 | MR

[2] Sitnik S.M., Shishkina E.L., Transmutation operators method for differential equations with Bessel operators, Fizmathlit Publ., Moscow, 2019 (In Russ.) | MR

[3] Sitnik S.M., Shishkina E.L., Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics, Elsevier, Amsterdam, 2020 | MR | Zbl

[4] Balakrishnan A.V., “Fractional powers of closed operators and the semi-groups generated by them”, Pacific Journal of Mathematics, 10 (1960), 419–437 | DOI | MR | Zbl

[5] Sitnik S.M., Shishkina E.L., “On fractional powers of Bessel operators”, Journal of Inequalities and Special Functions, 8:1 (2017), 49–67 | MR

[6] Sitnik S.M., Shishkina E.L., “On fractional powers of the Bessel operator on semiaxis”, Siberian Electronic Mathematical Reports, 15 (2018), 1–10 | MR | Zbl

[7] Lyakhov L.N., “Inversion of the B-Riesz potentials”, Reports of USSR Academy of Sciences, 321:3 (1991), 466–469 (In Russ.) | MR | Zbl

[8] Lyakhov L.N., “Spaces of Riesz B-potentials.”, Reports of USSR Academy of Sciences, 334:3 (1994), 278–280 (In Russ.) | MR | Zbl

[9] Lyakhov L.N., “Description of the Riesz B-potential space $U^\gamma_\alpha(L_p^\gamma)$ using B-derivatives of order $2[\alpha/2]$”, Reports of USSR Academy of Sciences, 341:2 (1995), 161–165 (In Russ.) | MR | Zbl

[10] Lyakhov L.N., Polovinkina M.V., “The Space of Weighted Bessel Potentials”, Proceedings of Steklov Institute of Mathematics, 250 (2005), 192–197 | MR | Zbl

[11] Guliev V.S., “Embedding theorems for weighted Sobolev spaces of B-valued functions”, Reports of USSR Academy of Sciences, 338:4 (1994), 440–443 (In Russ.) | MR | Zbl

[12] Riesz M., “L'intégrale de Riemann — Liouville et le probleme de Cauchy”, Acta Mathematica, 81:1–2 (1949), 1–223 | DOI | MR | Zbl

[13] Fremberg M.E., “Some applications of the Riesz potential to the theory of the electromagnetic Field and the Meson field”, Proceedings of the Royal Society, 188 (1946), 18–31 | MR | Zbl

[14] Caffarelli L., Silvestre L., “An extension problem related to the fractional Laplacian”, Communications in Partial Differential Equations, 32:8 (2006), 1245–1260 | DOI | MR

[15] Enciso A., del Mar Gonzalez M., Vergara B., “Fractional powers of the wave operator via Dirichlet-to-Neumann maps in anti-de Sitter spaces”, Journal of Functional Analysis, 273:6 (2016), 2144–2166 | DOI | MR

[16] Kipriyanov I.A., Singular elliptic boundary value problems, Nauka Publ., Moscow, 1997 (In Russ.) | MR | Zbl

[17] Levitan B.M., “Expansion in Fourier series and integrals with Bessel functions”, Achievements of mathematical sciences, 6:2 (42) (1951), 102–143 (In Russ.) | MR | Zbl

[18] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and Series, v. 2, Special Functions, Gordon Breach Sci. Publ., New York, 1990 | MR | Zbl

[19] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publ., Inc., New York, 1972 | MR

[20] Kratzer A., Franz W., Transzendente Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1960 | MR | Zbl

[21] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and Series, v. 1, Elementary Functions, Gordon Breach Sci. Publ., New York, 1992 | MR

[22] Samko S.G. Kilbas A.A., Marichev O.I., Integrals and derivatives of fractional order and some of their applications, Nauka i tekhnika Publ., Minsk, 1987 (In Russ.) | MR | Zbl

[23] Rabinowitz P., Weiss G., “Tables of Abscissas and Weights for Numerical Evaluation of Integrals of the form $ \int\limits_{0}^{\infty }\exp(-x)x^{n}f(x)\,dx$”, Mathematical Tables and Other Aids to Computation, 13 (1959), 285–294 | DOI | MR | Zbl

[24] Davis P., Rabinowitz P., Methods of Numerical Integration, Dover Publ., Inc., New York, 2007 | MR | Zbl

[25] Szegő G., Orthogonal Polynomials, American Mathematical Society, Providence, 1975 | MR | Zbl