Contact resistance of rectangular contact
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 2, pp. 162-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conductive body is considered in the form of a parallelepiped, at the ends of which small contacts of the same rectangular shape are connected. The length and the width of these contacts is equal to the values $\varepsilon $ and $\mu$, considered below as small parameters. The case of a uniform current density at the contacts is considered. A physical situation close to it occurs, for example, in the presence of a thin, poorly conductive film on the contact surface. The potential of the electric current of the sample is modeled with the help of a solution for the Neumann problem to the Laplace equation in a parallelepiped. The electrical resistance is calculated as the sum of a double series, singularly depending on two small parameters $\varepsilon$ and $\mu$. We consider the case when $\mu=k\varepsilon$, where $k$ is some constant. The principal term of the asymptotic expansion of the sum of the given series for $\varepsilon\to0$ corresponds to the contact resistance of a rectangular contact with the sides $2\varepsilon$ and $2\mu$. The purpose of this paper is to obtain an explicit expression for this contact resistance.
Keywords: contact resistance, electric potential, boundary value problem, Laplace equation, small parameter, asymptotic expansion.
@article{CHFMJ_2021_6_2_a2,
     author = {J. A. Krutova},
     title = {Contact resistance of rectangular contact},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {162--171},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a2/}
}
TY  - JOUR
AU  - J. A. Krutova
TI  - Contact resistance of rectangular contact
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 162
EP  - 171
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a2/
LA  - ru
ID  - CHFMJ_2021_6_2_a2
ER  - 
%0 Journal Article
%A J. A. Krutova
%T Contact resistance of rectangular contact
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 162-171
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a2/
%G ru
%F CHFMJ_2021_6_2_a2
J. A. Krutova. Contact resistance of rectangular contact. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 2, pp. 162-171. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a2/

[1] Ershov A.A., “Asymptotics of the solution to the Neumann problem with a delta-function-like boundary function”, Computational Mathematics and Mathematical Physics, 50:3 (2010), 457–463 | DOI | MR | Zbl

[2] Ershov A.A., “Asymptotics of the solution of Laplace’s equation with mixed boundary conditions”, Computational Mathematics and Mathematical Physics, 51:7 (2011), 994–1010 | DOI | MR | Zbl

[3] Ershov A.A., “On measurement of electrical conductivity”, Computational Mathematics and Mathematical Physics, 53:6 (2013), 823–826 | DOI | MR | Zbl

[4] Holm R., Electrical contacts, Foreign Literature, Moscow, 1961

[5] Landau L.D., Lifshitz E.M., Course of Theoretical Physics, v. 8, Electrodynamics of Continuous Media, Heinemann, Oxford, Butterworth, 1984 | MR | MR

[6] Bateman H., Erdelyi A., Higher transcendental functions, v. 2, McGraw-Hill Book Company Inc., New York, 1953 | MR

[7] Ershov A.A., “Contact resistance of a square contact”, Proceedings of the Steklov Institute of Mathematics, 303, suppl. 1 (2018), 70–78 | DOI | MR