Influence of high pressure torsion on magnetic properties Fe$_{50}$Ni$_{50}$ and Fe$_{49}$Ni$_{49}$Al$_{2}$ alloys
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 2, pp. 255-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

We report on magnetic properties of Fe$_{50}$Ni$_{50}$ and Fe$_{49}$Ni$_{49}$Al$_{2}$ alloys after severe plastic deformation (SPD) by high pressure torsion (HPT) technique. SPD considerably changes the magnetization behavior. The main magnetic characteristics of bulk and HPT materials were determined. Low temperature annealing was used to form the L1$_{0}$ structure. Low temperature annealing at T = 300$^{\circ}$C for t = 1300 hours of plastically deformed Fe$_{49}$Ni$_{49}$Al$_{2}$ alloy leads to an increase in saturation magnetization M$_S$ by up to about 6%. However, it is premature to talk about the formation of even a small amount of phase L1$_{0}$. More research is required.
Keywords: Hard and soft magnetic materials, high pressure torsion, severe plastic deformation, rare-earth free metals, permanent magnet, low temperature annealing, tetrataenite.
@article{CHFMJ_2021_6_2_a10,
     author = {M. N. Ulyanov and M. Yu. Bogush and M. A. Gavrilova and S. V. Taskaev and Z. Hu and D. V. Gunderov and D. A. Zherebtsov and E. P. Ulyanova},
     title = {Influence of high pressure torsion on magnetic properties  {Fe}$_{50}${Ni}$_{50}$ and {Fe}$_{49}${Ni}$_{49}${Al}$_{2}$ alloys},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {255--263},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a10/}
}
TY  - JOUR
AU  - M. N. Ulyanov
AU  - M. Yu. Bogush
AU  - M. A. Gavrilova
AU  - S. V. Taskaev
AU  - Z. Hu
AU  - D. V. Gunderov
AU  - D. A. Zherebtsov
AU  - E. P. Ulyanova
TI  - Influence of high pressure torsion on magnetic properties  Fe$_{50}$Ni$_{50}$ and Fe$_{49}$Ni$_{49}$Al$_{2}$ alloys
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 255
EP  - 263
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a10/
LA  - en
ID  - CHFMJ_2021_6_2_a10
ER  - 
%0 Journal Article
%A M. N. Ulyanov
%A M. Yu. Bogush
%A M. A. Gavrilova
%A S. V. Taskaev
%A Z. Hu
%A D. V. Gunderov
%A D. A. Zherebtsov
%A E. P. Ulyanova
%T Influence of high pressure torsion on magnetic properties  Fe$_{50}$Ni$_{50}$ and Fe$_{49}$Ni$_{49}$Al$_{2}$ alloys
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 255-263
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a10/
%G en
%F CHFMJ_2021_6_2_a10
M. N. Ulyanov; M. Yu. Bogush; M. A. Gavrilova; S. V. Taskaev; Z. Hu; D. V. Gunderov; D. A. Zherebtsov; E. P. Ulyanova. Influence of high pressure torsion on magnetic properties  Fe$_{50}$Ni$_{50}$ and Fe$_{49}$Ni$_{49}$Al$_{2}$ alloys. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 2, pp. 255-263. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a10/

[1] Kramer K., “Concern grows over China’s dominance of rare-earth metals”, Physics Today, 63 (2010), 22–24

[2] Sugimoto S., “Current status and recent topics of rare-earth permanent magnets”, Journal of Physics D: Applied Physics, 44 (2011), 064001 | DOI

[3] Skomski R., Shield J.E., Sellmyer D.J., “An elemental question”, Magnetics Technology International, UKIP Media Events, Ltd., 2011, 26–29

[4] Coey J.M.D., “Permanent magnets: plugging the gap”, Scripta Materialia, 67 (2012), 524–529 | DOI

[5] Kramer M.J., McCallum R.W., Anderson I.A., Constantinides S., “Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators”, JOM, 64 (2012), 752–763 | DOI

[6] Balamurugan B. et al., “Prospects for nanoparticle-based permanent magnets”, Scripta Materialia, 67 (2012), 542–547 | DOI

[7] Lewis L.H., Pinkerton F.E., Bordeaux N., Mubarok A., Poirier E., Goldstein J.I., Skomski R., Barmak K., “De magnete et meteorite: cosmically motivated materials”, IEEE Magnetics Letters, 5 (2014), 1–4 | DOI

[8] Pauleve J., Chamberod A., Krebs K., Bourret A., “Magnetization curves of Fe-Ni (50-50) single crystals ordered by neutron irradiation with an applied magnetic field”, Journal of Applied Physics, 39 (1968), 989 | DOI

[9] Ohtsuki T., Kotsugi M., Ohkochi T., Lee S., Horita Z., Takanashi K., “Nanoscale characterization of FeNi alloys processed by high-pressure torsion using photoelectron emission microscope”, Journal of Applied Physics, 114 (2013), 143905 | DOI

[10] Burkert T., Nordström L., Eriksson O., Heinonen O., “Giant magnetic anisotropy in tetragonal FeCo alloys”, Physical Review Letters, 93 (2004), 027203 | DOI

[11] Lin C.J., Gorman G.L., “Evaporated CoPt alloy films with strong perpendicular magnetic anisotropy”, Applied Physics Letters, 61 (1992), 1600 | DOI

[12] Inoue K., Shima H., Fujita A., Ishida K., Oikawa K., Fukamichi K., “Temperature dependence of magnetocrystalline anisotropy constants in the single variant state of L1$_0$-type FePt bulk single crystal”, Applied Physics Letters, 88 (2006), 102503 | DOI

[13] Shima H., Oikawa K., Fujita A., Fukamichi K., Ishida K., Sakuma A., “Lattice axial ratio and large uniaxial magnetocrystalline anisotropy in L1$_0$-type FePd single crystals prepared under compressive stress”, Physical Review B, 70 (2004), 224408 | DOI

[14] Yang C.W., Williams D.B., Goldstein J.I., “A revision of the Fe-Ni phase diagram at low temperatures (400 $^{\circ}$C)”, Journal of Phase Equilibria, 17 (6) (1996), 522 | DOI

[15] Mizuguchi M., Sekiya S., Takanashi K., “Characterization of Cu buffer layers for growth of L1$_0$-FeNi thin films”, Journal of Applied Physics, 107 (2010), 09A716 | DOI

[16] Kojima T., Mizuguchi M., Koganezawa T., Osaka K., Kotsugi M., Takanashi K., “Magnetic anisotropy and chemical order of artificially synthesizedL1$_0$-ordered FeNi films on Au-Cu-Ni buffer layers”, Japanese Journal of Applied Physics, 51 (2012), 010204 | DOI

[17] Wasilewski P., Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite, 1998, Physics of the Earth and Planetary Interiors, 52, 150–158 pp.

[18] Skomski R., Coey J.M.D., Permanent Magnetism, Institute of Physics, Bristol, 1999

[19] Skomski R., Manchanda P., Kumar P., Balamurugan B., Kashyap A., Sellmyer D.J., “Predicting the future of permanent-magnet materials”, IEEE Transactions on Magnetics, 49 (7) (2013), 3215–3220 | DOI

[20] Neel L., Pauleve J., Pauthenet R., Laugier J., Dautreppe D., “Magnetic properties of an Iron-Nickel single crystal ordered by neutron bombardment”, Journal of Applied Physics, 35 (1964), 873 | DOI

[21] Neel L., Pauleve J., Dautreppe D., Laugier J., “Une nouvelle transition ordre-désordre dans Fe-Ni (50-50)”, Comptes Rendus de l'Académie des Sciences, 254 (1962), 965

[22] Reuter K.B., Williams D.B., Goldstein J.I., “Ordering in the Fe-Ni system under electron irradiation”, Metallurgical and Materials Transactions A, 20 (1989), 711–718 | DOI

[23] Shima T., Okamura M., Mitani S., Takanashi K., “Structure and magnetic properties for L1$_0$-ordered FeNi films prepared by alternate monatomic layer deposition”, Journal of Magnetism and Magnetic Materials, 310 (2007), 2219–2214 | DOI

[24] Kojima T., Mizaguchi M., Takanashi K., “L1$_0$-ordered FeNi film grown on Cu-Ni binary buffer layer”, Journal of Physics: Conference Series, 266 (2011), 012119 | DOI

[25] Mizuguchi M., Kojima T., Kotsugi M., Koganezawa T., Osaka K., Takanashi K., “Artificial fabrication and order parameter estimation of L1$_0$-ordered FeNi thin film grown on a AuNi buffer layer”, Journal of the Magnetics Society of Japan, 35 (2011), 370–373 | DOI

[26] Manchanda P., Skomski R., Bordeaux N., Lewis L.H., Kashyap A., “Transition-metal and metalloid substitutions in L1$_0$-ordered FeNi”, Journal of Applied Physics, 115 (2014), 17A170

[27] Ma L., Williams D.B., Goldstein J.I., “Determination of the Fe-rich portion of the Fe-Ni-S phase diagram”, Journal of Phase Equilibria, 19 (1998), 299 | DOI

[28] Kabanova I.G., Sagaradze V.V., Kataeva N.V., “Formation of an L1$_0$ superstructure in austenite upon the $\alpha \rightarrow \gamma$ transformation in the invar alloy Fe-32% Ni”, Physics of Metals and Metallography, 112 (2011), 267 | DOI

[29] Taskaev S.V., Ulyanov M.N., Gunderov D.V., Bogush M.Yu., “Magnetic properties of ternary Fe–Ni–Ti alloys after severe plastic deformation”, IEEE Magnetics Letters, 11 (2020), 7502805 | DOI

[30] Ulyanov M.N., Taskaev S.V., Shevyrtalov S.N., Medvedskaya P., Gunderov D.V., “Structural properties of Fe$_{49}$Ni$_{49}$Al$_2$ alloy deformed by high pressure torsion”, AIP Advances, 11 (2) (2021), 025311 | DOI

[31] Sakai G., Horita Z., Langdon T.G., “Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion”, Materials Science and Engineering: A, 393 (2005), 344–351 | DOI

[32] Shelekhov E.V., Sviridova T.A., “Programs for X-ray analysis of polycrystals”, Metal Science and Heat Treatment, 42 (2000), 309–313 | DOI

[33] Kołodziej M., Śniadecki Z., Musiała A., Pierunek N., Ivanisenko Yu., Muszyński A., Idzikowski B., “Structural transformations and magnetic properties of plastically deformed FeNi-based alloys synthesized from meteoritic matter”, Journal of Magnetism and Magnetic Materials, 502 (2020), 166577 | DOI

[34] Mehrmohammadi M., Yoon K.Y., Qu M., Johnston K.P., Emelianov S.Y., “Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters”, Nanotechnology, 22 (2010), 045502 | DOI

[35] Goto S., Kura H., Watanabe E., Hayashi Y., Yanagihara H., Shimada Y., Mizuguchi M., Takanashi K., Kita E., “Synthesis of single-phase L1$_0$-FeNi magnet powder by nitrogen insertion and topotactic extraction”, Scientific Reports, 7 (2017), 13216 | DOI