Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2021_6_2_a0, author = {O. V. Baeva and D. A. Kulikov}, title = {Goodwin's business cycle model and synchronization of oscillations of two interacting economies}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {137--151}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a0/} }
TY - JOUR AU - O. V. Baeva AU - D. A. Kulikov TI - Goodwin's business cycle model and synchronization of oscillations of two interacting economies JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2021 SP - 137 EP - 151 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a0/ LA - ru ID - CHFMJ_2021_6_2_a0 ER -
%0 Journal Article %A O. V. Baeva %A D. A. Kulikov %T Goodwin's business cycle model and synchronization of oscillations of two interacting economies %J Čelâbinskij fiziko-matematičeskij žurnal %D 2021 %P 137-151 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a0/ %G ru %F CHFMJ_2021_6_2_a0
O. V. Baeva; D. A. Kulikov. Goodwin's business cycle model and synchronization of oscillations of two interacting economies. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 2, pp. 137-151. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_2_a0/
[1] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR | Zbl
[2] Keynes J. M., General Theory of Employment, Interest, and Money, Harcourt Brace, New York, 1936 | MR
[3] Gudwin R. M., “The nonlinear accelerator and the persistence of business cycles”, Econometrica, 19:1 (1951), 1–17 | DOI
[4] Lorenz H. W., “Goodwin's nonlinear acceselerator and chaotic motion”, Journal of Economics, 47:4 (1987), 413–418 | DOI | MR | Zbl
[5] Lorenz H. W., Nusse H. E., “Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin's nonlinear accelerator model reconsidered”, Chaos, Solitons Fractals, 13 (2002), 957–965 | DOI | MR | Zbl
[6] Bashkirtseva I., Ryazanova T., Ryashko L., “Confidence domains in the analysis of noise-unduced transition to chaos for Goodwin model of business cycles”, International Journal of Bifurcation and Chaos, 24:8 (2014), 1–10 | DOI | MR
[7] Ryazanova T., Jungeilges J., “Noise-induced transitions in a stochastic Goodwin-type business cycle model”, Structural Change and Economic Dynamics, 40 (2017), 103–115 | DOI
[8] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, New York, 1993 | MR | Zbl
[9] Marsden J.E., McCrasken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976 | MR | Zbl
[10] Arnold V.I., Additional chapters of the theory of ordinary differential equations, Nauka Publ., Moscow, 1978 (In Russ.)
[11] Guckenheimer J., Holmes P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983 | MR | Zbl
[12] Demidovich B.P., Lectures on the mathematical theory of stability, Nauka Publ., Moscow, 1967 (In Russ.) | MR
[13] Kolesov A.Yu., Kulikov A.N., Rozov N.Kh., “Invariant tori of a class of point transformations: preservation of an invariant torus under perturbations”, Differential Equations, 39:6 (2003), 775–790 | DOI | MR | Zbl
[14] Kulikov D.A., “Self-similar periodic solutions and bifurcations from them in the problem of interaction of two weakly coupled oscillators”, News of universities. Applied nonlinear dynamics, 14:5 (2006), 120–132 (In Russ.) | Zbl
[15] Kulikov D. A., “Self-similar cycles and their local bifurcations in the problem of two weakly coupled oscillators”, Journal of Applied Mathematics and Mechanics, 74:4 (2010), 389–400 | DOI | MR | Zbl
[16] Huygens C., The Pendulum Clock, English translation, orig. publ. in 1673, Iowa State University Press, Iowa, 1986 | MR