On the mechanism of proton conductivity of polyantimonic acid
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 95-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study is devoted to the specification of the proton conductivity mechanism of the polyantimonic acid (PAA) H$_2$Sb$_2$O$_6\cdot n$H$_2$O, $2$, crystallized within the pyrochlore-type structure (sp. gr. Fd3m). In the introduction it is noted that the core of the structure is formed by [Sb$_2$O$_6$]$^{2-}$-octahedra, connected by apexes, and the hexagonal channels, containing H$_3$O$^+$-ions and H$_2$O molecules. H- and Cd-forms of PAA were chosen as the objects of the research. It was established that cadmium ions are located in hexagonal channels of the structure with the help of experimental methods: X-ray diffraction, scanning electron microscopy and the elemental microanalysis. The composition of the samples was determined by the thermogravimetry: it was shown that the sample of the Cd-form of PAA has a greater amount of adsorbed water compared to the H-form, but it does not contain H$_3$O$^+$-ions. Using the method of the impedance spectroscopy, it was found that the proton conductivity of the Cd-form of PAA is less by more than two orders of the H-form of PAA, which contradicts the theory of globular hydrates. A mechanism of the transport of protons in the H-form of PAA is proposed: a correlated transport of protons along the particular hydrogen bonds chain, formed by proton-containing groups, located in hexagonal channels within the structure, by oxygen anions of [Sb$_2$O$_6$]$^{2-}$-octahedra and molecules of adsorbed water.
Keywords: polyantimonic acid, pyrochlore-type structure, proton conduction, solid electrolyte, globular hydrate.
@article{CHFMJ_2021_6_1_a8,
     author = {L. Yu. Kovalenko and V. A. Burmistrov and D. A. Zakharyevich and D. A. Kalganov},
     title = {On the mechanism of proton conductivity of polyantimonic acid},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {95--110},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a8/}
}
TY  - JOUR
AU  - L. Yu. Kovalenko
AU  - V. A. Burmistrov
AU  - D. A. Zakharyevich
AU  - D. A. Kalganov
TI  - On the mechanism of proton conductivity of polyantimonic acid
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 95
EP  - 110
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a8/
LA  - ru
ID  - CHFMJ_2021_6_1_a8
ER  - 
%0 Journal Article
%A L. Yu. Kovalenko
%A V. A. Burmistrov
%A D. A. Zakharyevich
%A D. A. Kalganov
%T On the mechanism of proton conductivity of polyantimonic acid
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 95-110
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a8/
%G ru
%F CHFMJ_2021_6_1_a8
L. Yu. Kovalenko; V. A. Burmistrov; D. A. Zakharyevich; D. A. Kalganov. On the mechanism of proton conductivity of polyantimonic acid. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 95-110. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a8/

[1] Yu T., Zhang H., Cao H., Zheng G., “Understanding the enhanced removal of Bi(III) using modified crystalline antimonic acids: creation of a transitional pyrochlore-type structure and the Sb(V)-Bi(III) interaction behaviors.”, Chemical Engineering Journal, 360 (2019), 313–324 | DOI

[2] Lur'e Yu.Yu., Analytical chemistry handbook, Chemistry Publ., Moscow, 1989, 448 pp. (In Russ.)

[3] Chowdhry V., Barkley J. R., English A., Sleight E. I., “New Inorganic Proton Conductors”, Material Research Bulletin, 17:7 (1982), 917–983 | DOI

[4] Belinskaya F.A., Militsina E.A., “Inorganic ionexchange materials based on insoluble antimony(V) compounds”, Russian Chemical Reviews, 49:10 (1980), 933–952 (In Russ.)

[5] Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Yaroshenko F. A., Filonenko E. M., Bulaeva E. A., “Ion exchange of H$^+$/Na$^+$ in polyantimonic acid, doped with vanadium ions”, Pure and Applied Chemistry, 92:3 (2019), 505–514 | DOI

[6] Egorysheva A.V., Ellert O.G., Gaitko O.M., Brekhovskikh M.N., Zhidkova I.A., Maksimov Y.V., “Fluorination of {Bi$_{1,8}$Fe$_{1,2}$SbO$_7$} pyrochlore solid solutions”, Inorganic Materials, 53:9 (2017), 962–968 (In Russ.)

[7] Ozawa K., Eguchi M., Nakamura H., Sakka Y., “Bismuth-doping effect on structural properties and proton conductivity of pyrochlore-type antimonic acid”, Solid State Ionics, 172 (2004), 109–112 | DOI

[8] Klestchov D., Burmistrov V., Sheinkman A., Pletnev R., “Composition and Structure of Phases Formed in The Process of Hydrated Antimony Pentoxide Thermolysis”, Journal of Solid State Chemistry, 94:2 (1991), 220–226 | DOI

[9] Slade R. C. T., Hall G. P., Ramanan A., Prince E., “Structure and proton conduction in pyrochlore-type antimonic acid: a neutron diffraction study”, Solid State Ionics., 92 (1996), 171–181 | DOI

[10] Ozawa K., Hase M., Fujii H., Eguchi M., Yamaguchi H., Sakka Y., “Preparation and proton conductivity of monodisperse nanocrystals of pyrochlore-type antimonic acid and its niobium-substituted materials”, Electrochimica Acta, 50 (2005), 3205–3209 | DOI

[11] Abe M., Tsuji M., Kimura N., “Synthetic Inorganic Ion exchange Materials — 31. Ion-exchange Behavior of Tervalent Metals and Rare Earth Elements on Crystalline Antimonic (V) Acid Cation Exchanger”, Bulletin of the Chemical Society of Japan, 54 (1981), 130–134 | DOI

[12] Burmistrov V.A., Adrianova N.E., Ryabyshev V.Yu., Ryabyshev Yu.M., “Structure and thermolysis of Ag, H$_3$O-forms of hydrated antimony pentoxide”, Inorganic Materials, 33:12 (1997), 1251–1253 (In Russ.)

[13] Karaseva T.A., “Selection criterion for solid electrolytes with high proton conductivity”, Ukrainian Chemistry Journal, 52:6 (1986), 570–573 (In Russ.)

[14] Sakka Y., Sodeyama K., Uchikoshi T., Ozawa K., Amano M., “Characterization of proton conducting antimonic acids with amorphous, cubic and monoclinic structures”, Material Research Society Symposium Procedings, 453, 1996, 629–634 | DOI

[15] Kovalenko L.Yu., Burmistrov V.A., “Dielectric relaxation and proton conductivity of polyantimonic acid doped with vanadium ions”, Condensed Matter and Interphases, 21:2 (2019), 204–214 (In Russ.) | MR

[16] Goodenough J. B., “Proton Conductors: Solids, Membranes, and Gels-Materials and Devices”, Advanced Materials, 5:9 (1992), 683–685 | DOI

[17] Stenina I.A., Yaroslavtsev A.B., “Low- and intermediate-temperature proton-conducting electrolytes”, Inorganic Materials, 53:3 (2017), 253–262 | DOI

[18] Shchelkanova M.S., Pantyukhina M.I., Antonov B.D., Kalashnova A.V., “Creation of new solid electrolytes based on {Li$_{8-x}$Zr$_{1-x}$V$_{x}$O$_6$}”, Butlerov Communications, 38:5 (2014), 96–102 (In Russ.)

[19] Cliarfield A., Inorganic ion exchange materials, CRC Press, Boca Ration, 1982

[20] Yaroslavtsev A.B., “Ion exchange on inorganic sorbents”, Russian Chemical Reviews, 66:7 (1997), 579–596 | DOI

[21] Kovalenko L.Yu., Yaroshenko F.A., Burmistrov V.A., Isaeva T.N., Galimov D.M., “Thermolysis of hydrated antimony pentoxide”, Inorganic Materials, 55:6 (2019), 586–592 | DOI | MR

[22] Stewart D. J., Knop O., Ayasse C., Woodhams F. W., “Pyrochlores. VII. The Oxides of Antimony: an X-ray and Mossbauer Study”, Canadian Journal of Chemistry, 50 (1972), 690–700 | DOI

[23] Burmistrov V.A., Kleshchev D.G., Konev V.N., Pletnev R.N., “State of protons in hydrous antimony pentoxide”, Reports of USSR Academy of Sciences, 261:2 (1981), 366–368 (In Russ.) | MR

[24] Armstrong R. D., Dickinson T., Willis P. M., “The A.C. Impedance Of Powdered And Sintered Solid Ionic Conductors”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 53:3 (1974), 389–405 | DOI

[25] Niftaliev S.I., Kozaderova O.A., Kim K.B., Matchin K.S., “Study of the process of current transfer in the system heterogeneous ion-exchange membrane-ammonium nitrate solution”, Condensed Matter and Interphases, 18:2 (2016), 232–240 (In Russ.)

[26] Yaroshenko F.A., Burmistrov V.A., “Dielectric relaxation and protonic conductivity of polyantimonic crystalline acid at low temperatures”, Russian Journal of Electrochemistry, 51:5 (2015), 391–396 | DOI