Modern trends in studies of multicaloric materials
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 78-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of the multicaloric effect and multicaloric materials is described. Using thermodynamic relations, it is shown that the multicaloric effect is not the sum of single caloric effects and depends on the degree of interplay of the material subsystems. The systematization of multicaloric materials and the current state of the art in the study of materials with multicaloric effects have been carried out. Main trends in the search for advanced multicaloric materials for energy efficient technologies are noted.
Keywords: multicaloric effect, magnetocaloric effect, electrocaloric effect, barocaloric effect, elastocaloric effect, multicalorics, multicaloric materials, multiferroics.
@article{CHFMJ_2021_6_1_a6,
     author = {A. A. Amirov},
     title = {Modern trends in studies of multicaloric materials},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {78--86},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a6/}
}
TY  - JOUR
AU  - A. A. Amirov
TI  - Modern trends in studies of multicaloric materials
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 78
EP  - 86
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a6/
LA  - ru
ID  - CHFMJ_2021_6_1_a6
ER  - 
%0 Journal Article
%A A. A. Amirov
%T Modern trends in studies of multicaloric materials
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 78-86
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a6/
%G ru
%F CHFMJ_2021_6_1_a6
A. A. Amirov. Modern trends in studies of multicaloric materials. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 78-86. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a6/

[1] Tishin A. M., Spichkin Y. I., The Magnetocaloric Effect and its Applications, CRC Press, 2003

[2] Mañosa L., Gonzalez-Alonso D., Planes A., Bonnot E., Barrio M., Tamarit J. L., Aksoy S., Acet M., “Giant solid-state barocaloric effect in the Ni–Mn–In magnetic hape-memory alloy”, Nature Materials, 9 (2010), 478–481 | DOI

[3] Stern-Taulats E., Castán T., Mañosa L., Planes A., Mathur N. D., Moya X., “Multicaloric materials and effects”, MRS Bulletin, 43:4 (2018), 295–299 | DOI

[4] Vopson M. M., “The multicaloric effect in multiferroic materials”, Solid State Communications, 152 (2012), 2067–2070 | DOI

[5] Starkov A., Starkov I., “Multicaloric effect in a solid: new aspects”, Journal of Experimental and Theoretical Physics, 119 (2014), 258–263 | DOI

[6] Flerov I. N., Mikhaleva E. A., Gorev M. V., Kartashev A. V., “Caloric and multicaloric effects in oxygen ferroics and multiferroics”, Physics of the Solid State, 57 (2015), 429–441 | DOI

[7] Amirov A. A., Makoed I. I., Chaudhari Y. A., Bendre S. T., Yusupov D. M., Asvarov A. Sh., Liedienov N. A., Pashchenko A. V., “Magnetocaloric effect in BiFe$_{1-x}$Zn$_x$O$_3$ multiferroics”, Journal of Superconductivity and Novel Magnetism, 31 (2018), 1–6 | DOI

[8] Makoed I. I., Amirov A. A., Liedienov N. A., Pashchenko A. V., Yanushkevich K. I., “Predicted model of magnetocaloric effect in BiFeO$_3$-based multiferroics”, Solid State Sciences, 95 (2019), 105920 | DOI

[9] Planes A., Castan T., Saxena A., “Thermodynamics of multicaloric effects in multiferroics”, Philosophical Magazine, 94:17 (2014), 1893–1908 | DOI

[10] Ramachandran B., Ramachandra R. M. S., “Low temperature magnetocaloric effect in polycrystalline BiFeO$_3$ ceramics”, Applied Physics Letters, 95 (2009), 142505 | DOI

[11] Krishna Murthy J., Venimadhav A., “Multicaloric effect in multiferroic Y$_2$CoMnO$_6$”, Journal of Physics D: Applied Physics, 47 (2014), 445002 | DOI

[12] Ursic H., Bobnar V., Malic B., Filipic C., Vrabelj M., Drnovsek S., Jo Y., Wencka M., Kutnjak Z., “A multicaloric material as a link between electrocaloric and magnetocaloric refrigeration”, Scientific Reports., 6 (2016), 26629 | DOI

[13] Starkov A. S., Pakhomov O. V., Rodionov V. V., Amirov A. A., Starkov I. A., “Estimation of the thermodynamic efficiency of a solid-state cooler based on the multicaloric effect”, Technical Physics Letters, 44 (2018), 243–246 | DOI

[14] Amirov A. A., Makoed I. I., Yusupov D. M., “Multicaloric effect in bismuth ferrite”, Chelyabinsk Physical and Mathematical Journal, 5:2 (2020), 140–149

[15] Gràcia-Condal A., Stern-Taulats E., Planes A., Mañosa L., “Caloric response of Fe$_{49}$Rh$_{51}$ subjected to uniaxial load and magnetic field”, Physical Review Materials, 2 (2018), 084413 | DOI

[16] Gottschall T., Gràcia-Condal A., Fries M., Taubel A., Pfeuffer L., Mañosa L., Planes A., Skokov K. P., Gutfleisch O., “A multicaloric cooling cycle that exploits thermal hysteresis”, Nature Materials., 17 (2018), 929–934 | DOI

[17] Liu Y., Phillips L., Mattana R., Bibes M., Barthélémy A., Dkhil B., “Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle”, Nature Communications, 7 (2016), 11614 | DOI

[18] Hu Q. B., Li J., Wang C. C., Zhou Z. J., Cao Q. Q., Zhou T. J., Wang D. H., Du Y. W., “Electric field tuning of magnetocaloric effect in FeRh$_{0.96}$Pd$_{0.04}$/PMN–PT composite near room temperature”, Applied Physics Letters, 110 (2017), 22240

[19] Amirov A. A., Rodionov V. V., Starkov I. A., Starkov A. S., Aliev A. M., “Magneto-electric coupling in Fe$_{48}$Rh$_{52}$-PZT multiferroic composite”, Journal of Magnetism and Magnetic Materials, 470 (2019), 77–80 | DOI

[20] Amirov A. A., Baraban I. A., Grachev A. A., Kamantsev A. P., Rodionov V. V., Yusupov D. M., Rodionova V. V., Sadovnikov A. V., “Voltage–induced strain to control the magnetization of bi FeRh/PZT and tri PZT/FeRh/PZT layered magnetoelectric composites”, AIP Advances, 10 (2020), 025124 | DOI

[21] Stern-Taulats E., Castán T., Planes A., Lewis L. H., Barua R., Pramanick S., Majumdar S., Mañosa L., “Giant multicaloric response of bulkFe$_{49}$Rh$_{51}$”, Physical Review B., 95:10 (2017), 104424 | DOI