Magnetostatic equilibrium of the accretion disks of the T Tauri stars
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 52-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the magnetostatic equilibrium of an accretion disk with a large-scale magnetic field is solved. The equation of the magnetostatic equilibrium is written taking into account the gravity, the gas and magnetic pressure gradients. The heat transfer equation takes into account heating by the dissipation of turbulence and cooling by the radiation. The ordinary diffrential equations of the model are solved by the Runge — Kutta method of the $4$th order of accuracy. The radial structure of the disk is simulated using the accretion disk model of Dudorov and Khaibrakhmanov. An analytical solution of the induction equation for the azimuthal component of the magnetic field, $B_\varphi$, shows that the $B_\varphi(z)$ profile, generally speaking, is nonmonotonic when the magnetic field is assumed to be symmetric about the equatorial plane and the Dirichlet's boundary condition is used on the surface of the disk. If the Neumann's boundary condition is used at the surface, then $B_\varphi$ increases monotonically with the height. Numerical calculations show that, in the first case, the vertical gradient of the magnetic pressure leads to a thickening of the disk if the magnetic Reynolds number $R_{\rm m}\gg 1$, the density and temperature profiles become flatter, and the photosphere is located higher than in the case of no magnetic field. In the second case, the magnetic field causes the disk to «compress». The deviation of the disk height from the hydrostatic one is of $10$$15~\%$. A dynamically strong magnetic field is generated outside the «dead» zone (a region of a low degree of the ionization), which extends from $r=0.3$ au up to $(10$$20)$ au with typical parameters for a T Tauri star of the solar mass. Possible observed manifestations of the revealed features of the vertical structure of a disk with a magnetic field are discussed.
Keywords: accretion, accretion disk, magnetic field, magnetohydrodynamics (MHD), protoplanetary disk, interstellar matter.
@article{CHFMJ_2021_6_1_a5,
     author = {S. A. Khaibrakhmanov and A. E. Dudorov},
     title = {Magnetostatic equilibrium of the accretion disks of the {T} {Tauri} stars},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {52--77},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a5/}
}
TY  - JOUR
AU  - S. A. Khaibrakhmanov
AU  - A. E. Dudorov
TI  - Magnetostatic equilibrium of the accretion disks of the T Tauri stars
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 52
EP  - 77
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a5/
LA  - ru
ID  - CHFMJ_2021_6_1_a5
ER  - 
%0 Journal Article
%A S. A. Khaibrakhmanov
%A A. E. Dudorov
%T Magnetostatic equilibrium of the accretion disks of the T Tauri stars
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 52-77
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a5/
%G ru
%F CHFMJ_2021_6_1_a5
S. A. Khaibrakhmanov; A. E. Dudorov. Magnetostatic equilibrium of the accretion disks of the T Tauri stars. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 52-77. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a5/

[1] Inutsuka S.-i., “Present-day star formation: From molecular cloud cores to protostars and protoplanetary disks”, Progress of Theoretical and Experimental Physics, 2012:1 (2012), ID 01A307 | DOI

[2] Dudorov A. E., Khaibrakhmanov S. A., “Theory of fossil magnetic field”, Advances in Space Research, 55:1 (2015), 843–850 | DOI

[3] Williams J. P., Cieza L. A., “Protoplanetary disks and their evolution”, Annual Review of Astronomy and Astrophysics, 49 (2011), 67–117 | DOI

[4] Boccaletti A., Di Folco E., Pantin E., Dutrey A., Guilloteau S., Tang Y. W., Piétu V., Habart E., Milli J., Beck T. L., Maire A.-L., “Possible evidence of ongoing planet formation in AB Aurigae. A showcase of the SPHERE/ALMA synergy”, Astronomy Astrophysics, 637:5 (2020)

[5] Nayakshin S. et al., “TW Hya: an old protoplanetary disc revived by its planet”, Monthly Notices of the Royal Astronomical Society, 495 (2020), 285–304

[6] Dudorov A.E., “The hierarchy properties of interstellar clouds”, Astronomy journal, 68 (1991), 695–713 (In Russ.)

[7] Dudorov A.E., “Fossil magnetic field of T Tauri stars”, Astronomy journal, 72 (1995), 884–893 (In Russ.)

[8] Yang H., Johns-Krull C. M., “Magnetic field measurements of T Tauri Stars in the Orion Nebula Cluster”, The Astrophysical Journal., 729 (2011), 83 | DOI

[9] Tamura M., Sato S., “A two micron polarization survey of T Tauri Stars”, The Astronomical Journal, 98 (1989), 1368–1381 | DOI

[10] Frank A. E. et al., “Jets and outflows from star to cloud: Observations confront theory”, Protostars and Planets VI, Ch. 2, University of Arizona Press, Tucson, 2019, 451–474

[11] Li D. et al., “Mid-infrared polarization of Herbig Ae/Be discs”, Monthly Notices of the Royal Astronomical Society, 473 (2018), 1427–1437 | DOI

[12] Donati J.-F., Paletou F., Bouvier J., Ferreira J., “Direct detection of a magnetic field in the innermost regions of an accretion disk”, Nature, 438 (2005), 466–469 | DOI

[13] Vlemmings V. H. T. et al., “Stringent limits on the magnetic field strength in the disc of TW Hya”, Astronomy Astrophysics, 24, 7 (2019)

[14] Dudorov A. E., Khaibrakhmanov S. A., “Fossil magnetic field of accretion disks of young stars”, Astrophysics and Space Science, 351:1 (2014), 103–121 | DOI

[15] Gammie C. F., “Layered accretion in T Tauri disks”, The Astrophysical Journal, 457 (1996), 355–362 | DOI

[16] D'Alessio P., Canto J., Calvet N., Lizano S., “Accretion disks around young objects. I. The detailed vertical structure”, The Astrophysical Journal, 500 (1998), 411–427 | DOI

[17] Woitke P., Kamp I., Thi W.-F., “Radiation thermo-chemical models of protoplanetary disks. I. Hydrostatic disk structure and inner rim”, Astronomy Astrophysics, 501 (2009), 383–406 | DOI

[18] Akimkin V., Zhukovska S., Wiebe D., Semenov D., Pavlyuchenkov Ya., Vasyunin A., Birnstiel T., Henning Th., “Protoplanetary disk structure with grain evolution: The ANDES model”, The Astrophysical Journal, 766:8 (2013)

[19] Bisnovatyi-Kogan G. N., Lovelace R. V. E., “Vertical structure of stationary accretion disks with a large-scale magnetic field”, The Astrophysical Journal, 750:109 (2012)

[20] Guilet J., Ogilvie G. I., “Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems”, Monthly Notices of the Royal Astronomical Society, 441 (2014), 852–868 | DOI

[21] Campbell C. G., “A solution method for the radial and vertical structure of accretion discs with quadrupolar magnetic fields”, Monthly Notices of the Royal Astronomical Society, 345 (2003), 1110–1126 | DOI

[22] Dudorov A.E., Khaibrakhmanov S.A., “Kinematic MHD model of the accretion disks of young stars. Analytical solution”, Bulletin of Chelyabinsk state university, 2013, no. 9 (300), 27–39 (In Russ.)

[23] Dudorov A.E., Khaibrakhmanov S.A., “Kinematic MHD model of the accretion disks of young stars. Numerical simulations”, Bulletin of Chelyabinsk state university, 2013, no. 9 (300), 40–52 (In Russ.)

[24] Khaibrakhmanov S. A., Dudorov A. E., Sobolev A. M., Parfenov S. Yu., “Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect”, Monthly Notices of the Royal Astronomical Society, 464 (2017), 586–598 | DOI

[25] Lizano S., Tapia C., Boehler Y., D'Alessio P., “Vertical structure of magnetized accretion disks around young stars”, The Astrophysical Journal, 817:35 (2016)

[26] Khaibrakhmanov S. A., Dudorov A. E., “Influence of ohmic and ambipolar heating on the thermal structure of accretion discs”, Magnetohydrodynamics, 55:1–2 (2019), 65–72

[27] Landau L.D., Lifshitz E.M., Course of Theoretical Physics, v. 8, Electrodynamics of Continuous Media., 1st ed., Pergamon Press, 1960 | MR

[28] Frank-Kamenetskiy D.A., Lectures on plasma physics, Intellekt Publ., Dolgoprudnyy, 2008 (In Russ.)

[29] Zel'dovich Ya.B., Physics of shock waves and high-temperature hydrodynamic phenomena, Nauka Publ., Moscow, 1966 (In Russ.)

[30] Shakura N.I., “Disk model of the accretion onto relativistic star in a binary system”, Astronomy journal, 49 (1972), 921 (In Russ.)

[31] Shakura N. I., Sunyaev R. A., “Black holes in binary systems. Observational appearance”, Astronomy Astrophysics, 24 (1973), 337–355

[32] Shakura N.I., Accretion processes in astrophysics, Fizmatlit Publ., Moscow, 2016 (In Russ.)

[33] Khaibrakhmanov S.A., “Evolution of the fossil magnetic field of the accretion disks of young stars”, VI Pulkovo youth astronomical conference, Proceedings of the Pulkovo Astronomical Observatory, no. 224, 2016, 97–107 (In Russ.)

[34] Kudoh T., Shibata K., “Magnetically driven jets from accretion disks. I. Steady solutions and application to jets/winds in young stellar objects”, The Astrophysical Journal, 474 (1997), 362 | DOI

[35] Blandford R. D., Payne D. G., “Hydromagnetic flows from accretion disks and the production of radio jets”, Monthly Notices of the Royal Astronomical Society, 199 (1982), 883–903 | DOI | Zbl

[36] Semenov D. et al., “Rosseland and Planck mean opacities for protoplanetary discs”, Astronomy Astrophysics, 410 (2003), 611–621 | DOI

[37] Dudorov A.E., Sazonov Yu.V., “Hydrodynamics of the collapse of interstellar clouds. IV. Ionization fraction and ambipolar diffusion”, Scientific information, 63 (1987), 68–86 (In Russ.)

[38] Khaibrakhmanov S. A., Dudorov A. E., “Magnetic field buoyancy in accretion disks of young stars”, PEPAN Letters, 14 (2017), 882–885

[39] Khaibrakhmanov S. A., Dudorov A. E., “Outflows and particle acceleration in the accretion disks of young stars”, EPJ Web of Conferencess, 201 (2019), 09004 | DOI

[40] Levy E. H., “Magnetic field in the primitive solar nebula”, Nature, 276 (1978), 481 | DOI

[41] Khaibrakhmanov S. A., Dudorov A. E., Sobolev A. M., “Dynamics of magnetic flux tubes and IR-variability of young stellar objects”, Research in Astronomy and Astrophysics, 18:8 (2018), 90 | DOI

[42] Dudorov A. E., Khaibrakhmanov S. A., Sobolev A. M., “Dynamics of magnetic flux tubes in accretion discs of T Tauri stars”, Monthly Notices of the Royal Astronomical Society, 487 (2019), 5388–5404 | DOI

[43] Parker E., Space magnetic fields. Their formation and manifestation, Mir Publ., Moscow, 1982 (In Russ.)

[44] Tserkovnikov Yu.A., “Towards the issue of convectional instability of plasma”, Reports of USSR Academy of Sciences, 5 (1960), 87 (In Russ.) | Zbl

[45] Hughes D. W., “Magnetic buoyancy instabilities for a static plane layer ”, Geophysical Astrophysical Fluid Dynamics, 32:3–4 (1985), 273–316 | DOI | Zbl

[46] Todo Y., Uchida Y., Sato T., Rosner R., “Wiggled structure of Herbig — Haro objects: Helical kink instability of jets from young stellar objects”, The Astrophysical Journal, 403 (1993), 164 | DOI