Mots-clés : Guéant — Pu model, invariant solution.
@article{CHFMJ_2021_6_1_a4,
author = {Kh. V. Yadrikhinskiy and V. E. Fedorov},
title = {Invariant solutions of the {Gu\'eant~{\textemdash}} {Pu} model of options pricing and hedging},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {42--51},
year = {2021},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a4/}
}
TY - JOUR AU - Kh. V. Yadrikhinskiy AU - V. E. Fedorov TI - Invariant solutions of the Guéant — Pu model of options pricing and hedging JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2021 SP - 42 EP - 51 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a4/ LA - ru ID - CHFMJ_2021_6_1_a4 ER -
Kh. V. Yadrikhinskiy; V. E. Fedorov. Invariant solutions of the Guéant — Pu model of options pricing and hedging. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 42-51. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a4/
[1] Black F., Scholes M., “The pricing of options and corporate liabilities”, Journal of Political Economy, 81 (1973), 637–659 | DOI | MR
[2] Sircar R., Papanicolaou G., “Generalized Black — Scholes models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5:1 (1998), 45–82 | DOI | MR | Zbl
[3] Schönbucher P., Wilmott P., “The feedback-effect of hedging in illiquid markets”, SIAM Journal on Applied Mathematics, 61 (2000), 232–272 | DOI | MR | Zbl
[4] Guéant O., Pu J., “Option pricing and hedging with execution costs and market impact”, arXiv: (data obrascheniya: 26.01.2021) 1311.4342
[5] Guéant O., The Financial Mathematics of Market Liquidity. From Optimal Execution to Market Making, CRC Press, Taylor Francis Group, Boca Raton, London, New York, 2016 | MR
[6] Dyshaev M.M., Fedorov V.E.., “Symmetry analysis and exact solutions of a nonlinear model of the financial markets theory”, Mathematical Notes of NEFU, 23:1 (2016), 28–45 | MR | Zbl
[7] Dyshaev M.M., “On some options pricing models on illiquid markets.”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 18–29 | MR
[8] Fedorov V. E., Dyshaev M.M., “Invariant solutions for nonlinear models in illiquid markets”, Mathematical Methods in the Applied Sciences, 41:18 (2018), 8963–8972 | DOI | MR | Zbl
[9] Fedorov V. E., Dyshaev M.M., “Group classification for a class -linear models of the RAPM type”, Communications in Nonlinear Science and Numerical Simulation, 92 (2021), 10 | DOI | MR | Zbl