Invariant solutions of the Gu\'eant~--- Pu model of options pricing and hedging
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of the options pricing and hedging methodology, taking into account the execution costs and market influence, related to nonlinear Black — Scholes equations, is considered. Invariant solutions are found for two-dimensional subalgebras of the five-dimensional Lie algebra of the equation under study.
Keywords: options pricing, hedging, Black — Scholes type equation, Guéant — Pu model, Lie algebra, invariant solution.
@article{CHFMJ_2021_6_1_a4,
     author = {Kh. V. Yadrikhinskiy and V. E. Fedorov},
     title = {Invariant solutions of the {Gu\'eant~---} {Pu} model of options pricing and hedging},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a4/}
}
TY  - JOUR
AU  - Kh. V. Yadrikhinskiy
AU  - V. E. Fedorov
TI  - Invariant solutions of the Gu\'eant~--- Pu model of options pricing and hedging
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 42
EP  - 51
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a4/
LA  - ru
ID  - CHFMJ_2021_6_1_a4
ER  - 
%0 Journal Article
%A Kh. V. Yadrikhinskiy
%A V. E. Fedorov
%T Invariant solutions of the Gu\'eant~--- Pu model of options pricing and hedging
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 42-51
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a4/
%G ru
%F CHFMJ_2021_6_1_a4
Kh. V. Yadrikhinskiy; V. E. Fedorov. Invariant solutions of the Gu\'eant~--- Pu model of options pricing and hedging. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 42-51. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a4/

[1] Black F., Scholes M., “The pricing of options and corporate liabilities”, Journal of Political Economy, 81 (1973), 637–659 | DOI | MR

[2] Sircar R., Papanicolaou G., “Generalized Black — Scholes models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5:1 (1998), 45–82 | DOI | MR | Zbl

[3] Schönbucher P., Wilmott P., “The feedback-effect of hedging in illiquid markets”, SIAM Journal on Applied Mathematics, 61 (2000), 232–272 | DOI | MR | Zbl

[4] Guéant O., Pu J., “Option pricing and hedging with execution costs and market impact”, arXiv: (data obrascheniya: 26.01.2021) 1311.4342

[5] Guéant O., The Financial Mathematics of Market Liquidity. From Optimal Execution to Market Making, CRC Press, Taylor Francis Group, Boca Raton, London, New York, 2016 | MR

[6] Dyshaev M.M., Fedorov V.E.., “Symmetry analysis and exact solutions of a nonlinear model of the financial markets theory”, Mathematical Notes of NEFU, 23:1 (2016), 28–45 | MR | Zbl

[7] Dyshaev M.M., “On some options pricing models on illiquid markets.”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 18–29 | MR

[8] Fedorov V. E., Dyshaev M.M., “Invariant solutions for nonlinear models in illiquid markets”, Mathematical Methods in the Applied Sciences, 41:18 (2018), 8963–8972 | DOI | MR | Zbl

[9] Fedorov V. E., Dyshaev M.M., “Group classification for a class -linear models of the RAPM type”, Communications in Nonlinear Science and Numerical Simulation, 92 (2021), 10 | DOI | MR | Zbl