The nonlinear mathematical model of the impulse pile driver
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 34-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the operation of a pile-driving vibration loader, which is based on the impact on the submerged element in the form of a Maxwell — Feyer pulse, is described. This pulse has a number of properties, the main of which is optimality in the sense of the asymmetry coefficient. The solvability of the resulting model, which is a nonlinear differential equation of the second order, is investigated. The representation of the solution corresponds to the well-known principle of dividing into the sum of slow and fast movements. We write out eigenfunctions, on the basis of which we can construct approximate solutions using the Galerkin approximations. This algorithm allows us to conduct numerical experiments to determine the optimal parameters and characteristics of the devices under study.
Keywords: mathematical modeling, Galerkin method, pile-driving vibration loader, impulse driver, asymmetry coefficient.
@article{CHFMJ_2021_6_1_a3,
     author = {D. V. Kostin and T. I. Kostina and A. V. Zhurba and A. S. Myznikov},
     title = {The nonlinear mathematical model of the impulse pile driver},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {34--41},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a3/}
}
TY  - JOUR
AU  - D. V. Kostin
AU  - T. I. Kostina
AU  - A. V. Zhurba
AU  - A. S. Myznikov
TI  - The nonlinear mathematical model of the impulse pile driver
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 34
EP  - 41
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a3/
LA  - ru
ID  - CHFMJ_2021_6_1_a3
ER  - 
%0 Journal Article
%A D. V. Kostin
%A T. I. Kostina
%A A. V. Zhurba
%A A. S. Myznikov
%T The nonlinear mathematical model of the impulse pile driver
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 34-41
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a3/
%G ru
%F CHFMJ_2021_6_1_a3
D. V. Kostin; T. I. Kostina; A. V. Zhurba; A. S. Myznikov. The nonlinear mathematical model of the impulse pile driver. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 34-41. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a3/

[1] Blehman I.I., Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications, Word Scientific, 2000 | MR

[2] Tseytlin M.G., Verstov V.V., Azbelev G.G., Vibration engineering and technology in pile and drilling operations, Stroyizdat Publ., Leningrad, 1987 (In Russ.)

[3] Kostin V.A., Kostin D.V., Sapronov Yu.I., “Maxwell — Fejer polynomials and optimization of polyharmonic impulse”, Doklady Mathematics, 86:1 (2012), 512–514 | DOI | MR | Zbl

[4] Yermolenko V.N., Kostin V.A., Kostin D.V., Sapronov Yu.I., “Optimization of the polyharmonic pulse”, Bulletin of South Ural State University. Mathematical modeling and programming, 2012, no. 13, 35–44 (In Russ.) | Zbl

[5] Kostin D.V., “Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient”, Sbornik: Mathematics, 207:12 (2016), 1709–1728 | Zbl

[6] Deryagin B.V., What is friction?, USSR Academy of Sciences, Moscow, 1963 (In Russ.)

[7] Krasnosel'skii M.A., Rutitcki Ja.B., Stecenko V.Ja., Vainikko G.M., Zabreiko P.P., Approximate Solutions of Operator Equations, Walters — Noordhoff Publ., Groningen, 1972 | MR

[8] Borisovich Yu.G., Zvyagin V.G., Sapronov Yu.I., “Non-linear Fredholm maps and the Leray-Schauder theory”, Russian Mathematical Surveys, 32:4 (1977), 1–54 | DOI | MR | Zbl | Zbl

[9] Korotkih A.S., “Bifurcations of stationary solutions of the reaction-diffusion equation and a transition of concentrations to a stable state”, Bulletin of Voronezh State University. Ser.: Physics. Mathematics., 2017, no. 1, 115–127 (In Russ.) | MR | Zbl

[10] Darinsky B.M., Sapronov Yu.I., Tsarev S.L., “Bifurcations of extremals of Fredholm functionals”, Contemporary Mathematics. Fundamental Directions, 12 (2004), 3–140 (In Russ.) | Zbl

[11] Mikhlin S.G., Smolitskii Kh.L., Approximate Methods for Solution of Differential and Integral Equations, American Elsevier Publ., New York, 1967 | MR | Zbl