Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2021_6_1_a3, author = {D. V. Kostin and T. I. Kostina and A. V. Zhurba and A. S. Myznikov}, title = {The nonlinear mathematical model of the impulse pile driver}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {34--41}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a3/} }
TY - JOUR AU - D. V. Kostin AU - T. I. Kostina AU - A. V. Zhurba AU - A. S. Myznikov TI - The nonlinear mathematical model of the impulse pile driver JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2021 SP - 34 EP - 41 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a3/ LA - ru ID - CHFMJ_2021_6_1_a3 ER -
%0 Journal Article %A D. V. Kostin %A T. I. Kostina %A A. V. Zhurba %A A. S. Myznikov %T The nonlinear mathematical model of the impulse pile driver %J Čelâbinskij fiziko-matematičeskij žurnal %D 2021 %P 34-41 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a3/ %G ru %F CHFMJ_2021_6_1_a3
D. V. Kostin; T. I. Kostina; A. V. Zhurba; A. S. Myznikov. The nonlinear mathematical model of the impulse pile driver. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 34-41. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a3/
[1] Blehman I.I., Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications, Word Scientific, 2000 | MR
[2] Tseytlin M.G., Verstov V.V., Azbelev G.G., Vibration engineering and technology in pile and drilling operations, Stroyizdat Publ., Leningrad, 1987 (In Russ.)
[3] Kostin V.A., Kostin D.V., Sapronov Yu.I., “Maxwell — Fejer polynomials and optimization of polyharmonic impulse”, Doklady Mathematics, 86:1 (2012), 512–514 | DOI | MR | Zbl
[4] Yermolenko V.N., Kostin V.A., Kostin D.V., Sapronov Yu.I., “Optimization of the polyharmonic pulse”, Bulletin of South Ural State University. Mathematical modeling and programming, 2012, no. 13, 35–44 (In Russ.) | Zbl
[5] Kostin D.V., “Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient”, Sbornik: Mathematics, 207:12 (2016), 1709–1728 | Zbl
[6] Deryagin B.V., What is friction?, USSR Academy of Sciences, Moscow, 1963 (In Russ.)
[7] Krasnosel'skii M.A., Rutitcki Ja.B., Stecenko V.Ja., Vainikko G.M., Zabreiko P.P., Approximate Solutions of Operator Equations, Walters — Noordhoff Publ., Groningen, 1972 | MR
[8] Borisovich Yu.G., Zvyagin V.G., Sapronov Yu.I., “Non-linear Fredholm maps and the Leray-Schauder theory”, Russian Mathematical Surveys, 32:4 (1977), 1–54 | DOI | MR | Zbl | Zbl
[9] Korotkih A.S., “Bifurcations of stationary solutions of the reaction-diffusion equation and a transition of concentrations to a stable state”, Bulletin of Voronezh State University. Ser.: Physics. Mathematics., 2017, no. 1, 115–127 (In Russ.) | MR | Zbl
[10] Darinsky B.M., Sapronov Yu.I., Tsarev S.L., “Bifurcations of extremals of Fredholm functionals”, Contemporary Mathematics. Fundamental Directions, 12 (2004), 3–140 (In Russ.) | Zbl
[11] Mikhlin S.G., Smolitskii Kh.L., Approximate Methods for Solution of Differential and Integral Equations, American Elsevier Publ., New York, 1967 | MR | Zbl