Bitcoin abnormal transaction detection model based on machine learning
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 119-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the development of a reliable model for detecting abnormal bitcoin transactions that may be involved in money laundering and illegal trafficking of goods and services. The article proposed a model for detecting abnormal bitcoin transactions based on machine learning. For training and evaluation of the model, the Elliptic dataset is used, consisting of 46564 Bitcoin transactions: 4545 of "illegal" and 42019 of "legal" . The proposed model for detecting abnormal bitcoin transactions is based on various machine learning algorithms with the selection of hyperparameters. To evaluate the proposed model, we used the metric of accuracy, precision, recall, F1 score and index of balanced accuracy. Using the resampling algorithm in conditions of the class imbalance, it was possible to increase the reliability of the classification of anomalous bitcoin transactions in comparison with the best known result on the Elliptic dataset.
Keywords: Bitcoin transactions, classification, detection of abnormal transactions, machine learning.
@article{CHFMJ_2021_6_1_a10,
     author = {E. V. Fel'dman and A. N. Ruchay and V. K. Matveeva and V. D. Samsonova},
     title = {Bitcoin abnormal transaction detection model based on machine learning},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {119--132},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a10/}
}
TY  - JOUR
AU  - E. V. Fel'dman
AU  - A. N. Ruchay
AU  - V. K. Matveeva
AU  - V. D. Samsonova
TI  - Bitcoin abnormal transaction detection model based on machine learning
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 119
EP  - 132
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a10/
LA  - ru
ID  - CHFMJ_2021_6_1_a10
ER  - 
%0 Journal Article
%A E. V. Fel'dman
%A A. N. Ruchay
%A V. K. Matveeva
%A V. D. Samsonova
%T Bitcoin abnormal transaction detection model based on machine learning
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 119-132
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a10/
%G ru
%F CHFMJ_2021_6_1_a10
E. V. Fel'dman; A. N. Ruchay; V. K. Matveeva; V. D. Samsonova. Bitcoin abnormal transaction detection model based on machine learning. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 119-132. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a10/

[1] Weber M., Domeniconi G., Chen J., Weidele D., Bellei C., Robinson T., Leiserson C., Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks for Financial Forensics, 2019, arXiv: 1908.02591

[2] Elliptic Data Set. Bitcoin Transaction Graph, accessed 26.05.2020 https://www.kaggle.com/ellipticco/elliptic-data-set

[3] Bistarelli S., Mercanti I., Santini F., “A suite of tools for the forensic analysis of bitcoin transactions”, Preliminary Report: Euro-Par 2018 International Workshops, Euro-Par 2018 International Workshops (Turin, Italy, August 27–28, 2018), 2018

[4] Kedharewsari K., Anu M., Rajalakshmi V., “Integration of big data cloud computing to detect black money rotation with range — aggregate queries”, International Journal of Engineering and Technology, 8 (2016), 768–773

[5] Maksutov A., Alexeev M., Fedorova N., Andreev D., “Detection of blockchain transactions used in blockchain mixer of coin join type”, IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2019, 274–277 | DOI

[6] Oakley J., Worley C., Yu L., Brooks R., Skjellum A., “Unmasking criminal enterprises: an analysis of Bitcoin transactions”, 13th International Conference on Malicious and Unwanted Software (MALWARE), 2018, 161–166

[7] Plaksiy K., Nikiforov A., Miloslavskaya N., “Applying Big Data technologies to detect cases of money laundering and counter financing of terrorism”, 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), 2018, 70–77

[8] Yin H., Langenheldt K., Harlev M., Mukkamala R., Vatrapu R., “Regulating cryptocurrencies: a supervised machine learning approach to de-anonymizing the Bitcoin blockchain”, Journal of Management Information Systems, 36:1 (2019), 37–73 | DOI

[9] Thomas T., Vijayaraghavan A. P., Sabu E., Machine Learning Approaches in Cyber Security Analytics, Springer, Singapore, 2020

[10] Bishop C. M., Pattern Recognition and Machine Learning, Springer, New York, 2006 | MR | Zbl

[11] MacKay D., Information Theory, Inference, and Learning Algorithms, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[12] Tomek I., “Two modifications of CNN”, IEEE Transactions on Systems, Man, and Cybernetics, 6 (1976), 769–772 | MR | Zbl

[13] Garcia V., Mollineda R. A., Sanchez J. S., “Index of balanced accuracy: a performance measure for skewed class distributions”, Iberian Conference on Pattern Recognition and Image Analysis, 2009, 441–448 | DOI

[14] Pedregosa F. et al., “Scikit-learn: machine learning in Python”, Journal of Machine Learning Research, 12 (2011), 2825–2830 | MR | Zbl

[15] Dorogush A. V., Ershov V., Gulin A., Catboost: gradient boosting with categorical features support, 2018, arXiv: href{https://arxiv.org/abs/1810.11363}{1810.11363}

[16] Chen T., Guestrin C., “XGBoost: A scalable tree boosting system”, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 785–794 | DOI

[17] Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T. Y., “Lightgbm: a highly efficient gradient boosting decision tree”, Advances in Neural Information Processing Systems, 2017, 3146–3154

[18] Lemaitre G., Nogueira F., Aridas C., “Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning”, Journal of Machine Learning Research, 18 (2016), 559–563 | MR