A grid-based algorithm for constructing attainability sets with improved boundary approximation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 9-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Reachable sets provide a powerful tool for mathematical modeling. The paper proposes a new grid-based algorithm for constructing reachable sets of nonlinear control systems. The main idea of the proposed algorithm is to maximize the accuracy of boundary points computation. It also improves the accuracy of numerical solutions of some control problems. As an example, the paper describes a method for constructing an approximate solution of the time optimal control problem of the RTAC system. This system is used for benchmarking nonlinear control techniques. We implemented the proposed algorithm using the C++ programming language and the OpenMP library and performed a numerical simulation of the considered example. As a result, we constructed the time optimal control law of the RTAC system.
Keywords: optimal control, attainability set, grid-based method, RTAC, TORA.
@article{CHFMJ_2021_6_1_a1,
     author = {A. A. Zimovets and A. R. Matviychuk},
     title = {A grid-based algorithm for constructing attainability sets with improved boundary approximation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {9--21},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a1/}
}
TY  - JOUR
AU  - A. A. Zimovets
AU  - A. R. Matviychuk
TI  - A grid-based algorithm for constructing attainability sets with improved boundary approximation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2021
SP  - 9
EP  - 21
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a1/
LA  - ru
ID  - CHFMJ_2021_6_1_a1
ER  - 
%0 Journal Article
%A A. A. Zimovets
%A A. R. Matviychuk
%T A grid-based algorithm for constructing attainability sets with improved boundary approximation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2021
%P 9-21
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a1/
%G ru
%F CHFMJ_2021_6_1_a1
A. A. Zimovets; A. R. Matviychuk. A grid-based algorithm for constructing attainability sets with improved boundary approximation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 6 (2021) no. 1, pp. 9-21. http://geodesic.mathdoc.fr/item/CHFMJ_2021_6_1_a1/

[1] Ushakov V.N., Matviichuk A.R., Ushakov A.V., “Approximation of attainability sets and of integral funnels of differential inclusions”, Bulletin of Udmurt State University. Mathematics. Mechanics. Computer Sciences, 2011, no. v, 23–39 (In Russ.) | Zbl

[2] Ushakov V.N., Ukhobotov V.I., Ushakov A.V., Parshikov G.V., “On solving approach problems for control systems”, Proceedings of the Steklov Institute of Mathematics, 291, 2015, 263–278 | DOI | MR | Zbl

[3] Zimovets A.A., “A boundary layer method for the construction of approximate attainability sets of control systems”, Bulletin of South Ural State University. Ser. Mathematics. Mechanics. Physics, 5:1 (2013), 18–25 (In Russ.) | Zbl

[4] Zimovets A.A., Matviychuk A.R., “A parallel algorithm for constructing approximate attainable sets of nonlinear control systems”, Bulletin of Udmurt State University. Mathematics. Mechanics. Computer Sciences, 25:4 (2015), 459–472 (In Russ.) | Zbl

[5] Rand R. H., Kinsey R. J., Mingori D. L., “Dynamics of spinup through resonance”, International Journal of Non-Linear Mechanics, 27:3 (1992), 489–502 | DOI | Zbl

[6] Bupp R. T., Bernstein D. S., Coppola V. T., “A benchmark problem for nonlinear control design: problem statement, experimental testbed, and passive nonlinear compensation”, Proceedings of the American Control Conference, American Control Conference (Seattle), 1995, 363–4367 | MR

[7] Bupp R. T., Bernstein D. S., Coppola V. T., “Experimental implementation of integrator backstepping and passive nonlinear controllers on the RTAC testbed”, Proceedings of the IEEE International Conference on Control Applications, IEEE International Conference on Control Applications (Dearborn), 1996, 279–284 | MR

[8] Jankovic M., Fontaine D., Kokotovic P. V., “TORA example: cascade- and passivity-based control designs”, IEEE Transactions on Control Systems Technology, 4:3 (1996), 292–297 | DOI

[9] Wan C.-J., Bernstein D. S., Coppola V. T., “Global stabilization of the oscillating eccentric rotor”, Nonlinear Dynamics, 10 (1996), 49–62 | DOI | MR

[10] Tsiotras P., Corless M., Rotea M. A., “An $L_2$ disturbance attenuation solution to the nonlinear benchmark problem”, International Journal of Robust and Nonlinear Control, 8 (1998), 311–330 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Dussy S., El Ghaoui L., “Measurement-scheduled control for the RTAC problem: an LMI approach”, International Journal of Robust and Nonlinear Control, 8 (1998), 377–400 | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] Escobar G., Ortega R., Sira-Ramirez H., “Output-feedback global stabilization of a nonlinear benchmark system using a saturated passivity-based controller”, IEEE Transactions on Control Systems Technology, 7:2 (1999), 289–293 | DOI

[13] Jiang Z.-P., Hill D. J., Guo Y., “Stabilization and tracking via output feedback for the nonlinear benchmark system”, Automatica, 34:7 (1998), 907–915 | DOI | MR | Zbl

[14] Zhao J., Kanellakopoulos I., “Flexible backstepping design for tracking and disturbance attenuation”, International Journal of Robust and Nonlinear Control., 8 (1998), 331–348 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Avis J. M., Nersesov S. G., Nathan R., Ashrafiuon H., Muske K. R., “A comparison study of nonlinear control techniques for the RTAC system”, Nonlinear Analysis, 11:4 (2010), 2647–2658 | DOI | MR | Zbl

[16] Lee C.-H., Chang S.-K., “Experimental implementation of nonlinear TORA system and adaptive backstepping controller design”, Neural Computing and Applications, 21:4 (2012), 785–800 | DOI | MR

[17] Pavlov A., Janssen B., van de Wouw N., Nijmeijer H., “Experimental output regulation for a nonlinear benchmark system”, IEEE Transactions on Control Systems Technology, 15:4 (2007), 786–793 | DOI | MR

[18] Tavakoli M., Taghirad H. D., Abrishamchian M., “Identification and robust $H_\infty$ control of the rotational/translational actuator system”, International Journal of Control, Automation and Systems, 3:3 (2005), 387–396

[19] Ushakov V.N., Matviichuk A.R., Parshikov G.V., “A method for constructing a resolving control in an approach problem based on attraction to the feasibility set”, Proceedings of the Steklov Institute of Mathematics, 284, no. 1, 2014, 135–144 | DOI | MR

[20] Bupp R. T., Bernstein D. S., Coppola V. T., “A benchmark problem for nonlinear control design”, International Journal of Robust and Nonlinear Control, 8 (1998), 307–310 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR